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Notes on the Rate of Convergence of the Rayleigh-Ritz 

and Weinstein-Bazley Methods 

Tetsuro YAMAMOTO 

(Received 19 January, 1974) 

1. Introduction 

1 

It is of considerably difficult problem to estimate the 

rate of convergence of the Rayleigh-Ritz(RR) and the 

Weinstein-Bazley(WB) methods applied to general self-adjoint 

operators. For a certain class of operators, however,it can 

be easily estimated by comparing the corresponding matrices. 

The purpose of this note is to show this for the finite Hill 

operator and give some observations for another operator . 

Let A be a self-adjoint operator in a real Hilbert space 

having the inner product ( , ) and the norm Ilull=/(u,u). We 

assume that A is bounded below and that its spectrum consists 

of isolated eigenvalues Al~A2~ .. ' each having finite multi­

plicity. Further we assume that A can be represented as A(O) 

+A', where A(O) is a self-adjoint operator with known dis­

crete eigenvalues 1.1°) (AiO)~A2~ •.. ) and known orthonormal 

eigenfunctions ulO). We denote by Aln)(Ain)~A~n)~ ••• ~A~n» 
(n)_t( (n) (n) and r i - r il , ••• ,rin ) be the eigenvalues and the ortho-

normal eigenvectors of the nxn RR matrix Rn=(AulO),uJO» 

based upon 

<A(n» and 
-n 

(0) (0) (n) (n) 
the test functions ul , ••• ,un • Ai (AI ~ ••• 

wln)=t(wl~), ••• ,wl~» stand for the eigenvalues 
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and the orthonormal eigenvectors of the WB matrix Wn=(AiO)Oij) 

+([Pi,PjJ)-l respectively, where Pi= A,-luiO)(BaZley's special 
, 

choice) and [u,vJ=(A'u,v) for U,VED(A'), the domain of A . It 

is known that if A(n)<A(O) A(n)<A(n+l)<A <A(n+l)<A(n) for 
, n - n+l' i ~ i - i- i = i 

each i<n. u(n)= I r(n)u (0) and u(n)= I w(n)u(O) give the RR 
= i j =1 ij j i j =1 ij j 

and WB approximations for the orthonormal eigenfunction ui 

corresponding to Ai' respectively. 

2. The Matrices Rn and Wn for a Certain Class of Operators 

We first state the following theorem. 

Theorem 1. Let 
, (0)_ i+L (0) _ 

(1) A ui - l 8ijUj (i-l,2, ... ,n) 
j=l, (n) ( ) 

for some scalar 8ij . Then Rn-Wn=(£ij ) where EiJ =0 1f i~n-L 

or j<n-L. -= 

, (0) (0) Proof. We first note that 8ij =(A ui ,uj )=Bji and that 

the cond1t1oris (1) are equ1valent to 

or 

, (0)_ i+L (0) 
A u1 - l 81kuk (1=1,2, ... ,n) 

k=1-L 

(0)_1+L 
u1 - l 81kPk' 

k=1-L 
_ (0) (0) _ 1+L (0) _i+L 

Hence we have 0ij-(ui ,uj )- l 8ik (Pk,uj )- l 8ik [Pk,Pj,J. 
k=1-L k=1-L 

Th1s implies that, for each 1 such that i~n-L, the vector 
i-L-l n-i-L-. ~ 

(6, ... ,0,81i_L, ... ,8i1+L'0, ... ,0) (or its transpose) g1ves the 

1-th row (or column) of the nxn matrix (bij)=([Pi,Pj])-l. In 

order to determine the other elements bOT' we put bOT=BoT-E~~) 
(o,T=n-L+l, .• ;,n). Then, subst1tuting the relat10n 
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into 
n-L n (n) _ r [Pa,PkJl3kT+ r [Pa,PkJ(l3kT-EkT )-oaT' 

k=T-L k=n-L+l 
we now obtain 

n (n)_ T+L _ 
(2) r· [p a' Pk J Ek T - - r [p a' Pk J 13k T (a-I, 2 , .. • , n) . 

k=n-L+l k=n+l 
Clearl~ the system (2) has the unique solution 'Ej~)(n-L<j~n) 
for each T(n-L<T~n), and (2) is equivalent to 

n () T +L 
(3) r [Pa'PkJEk~ = - r [Pa,PkJ13kT (a=n-L+l, •.. ,n). 

k=n-L+l k=n+l 
This completes the proof. Q.E.D. 

3. The Rate of Convergence of the Methods Applied to 

the Finite Hill Equation 

3 

In this section weshallapply Theorem 1 to estimate the rate 

of convergence of the RR and WB methods applied to the finite 

Hill equation. Let A be defined by 
L 

Au = -u"+( I 2c 2kcos 2kx)u, c2L#o, 
k=l 

where tne Qomain of A consists of the functions u such that 

u(O)=u(~)=o, u(x+~)=u(x), u' is absolutely continuous and u"E 

L2(O,~). We define the operators A(O) and A' as 

A(O)u= -u"+au, A'=A-A(O) 
L 

respectively, where a is a constant such that a>M: I21c2kl. 
k=l 

Then 

AiO)= 4i 2-a, uiO)= J! sin 2ix (i~l). 

Therefore the conditions (1) are satisfied with 
L 

l3 ij = aOij + I c2k (oi_J k-oi+j k)' 
. k=l ' , 
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Lemma 1. Let A be the operator defined as above. Then there 

exists a positive constant E independent on n such that IEly) I 
~E (n-L<i,j~n) for all n. 

Proof. We rewrite (3) in the matrix form 

(4 ([ «n)_ ) Pn-L+i,Pn-L+j]) En-L+i:n-L+j)- -([Pn-L+i,Pn+j])C 

(i,j=1,2, •• ~ ,L), 

where 
Sn+l,n-L+l' "Sn+l,n 

C = = 

o o 
As is easily seen, we have 

= 'lT2 J'IT [Pn-L+i,Pn-L+J] ~(x)sin 2(n-L+i)x sin 2(n-L+j)xdx 
o· 

-+- 'lTl J'IT 
. 0 

~(x)cos 2(i-j)x dx =Pij 

and 

1 J'IT -+-- ~(x)cos 2(j-i+L)x dx =qij 
'IT 0 

L 1 
~(x)= (a+2 r c2kcos 2kx)-. Further we can show 

k=l LM2 
sufficiently large (e.g.,a>M+2Ic2LI)' the LxL . 

as n-+-oo , where 

that, if a is 

matrix P=(Pij) is strictly diagonally dom1nant, and nonsingular. 

Therefore we conclude from (4) that 

( (n) ) -1 
En-L+i,n-L+j -+- ~P QC 

as n-+-oo , where Q=(qij) (i,j=1,2, ••• ,L). Q.E.D. 

From Lemma l and the relation W W(n)=A(n)W(n) we have 
n iii • 
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Lemma 2. Let k>l be fixed and m be any positive integer -
such that n-mL + ~ as n + 00. Then we have 

where 

w ( n ) 0 ({ MIL }m) 
kj = 4(n-mL)2 

(n) 
w ok j n- , 

k 
= O( n-[L J ) 

M = M + 2(L-l)£. 

(j=n-L+l,n-L+2, •.• ,n), 

Therefore, by the same way as in the previous paper[16J, 

5 

we can apply Wilkinson's result[15;pp.172-l73] to estimate the 

rate of convergence of the RR and WB methods. The results are 

stated without proofs as follows: 

Theorem 2. Under the same assumption as in Lemma 2, we have 

= 0 ( { M IE }2m) 
4 (n-mL) 2 

-2E~] 
= O( n ) 

Corollary 1. A(n) _ A(n) 
k k ! " )2 ~ 2~J 

= o( MIL ). 
n 2 

Theorem 3. Let (u~n)'Uk)~O for fixed k. Then, as n+~, we 

have 

/lu(n) - U II k . k 
" m 

= o( { MIL } ) (k>l, n-mL+~) 
4(n-mL)2 -

- 5 -



6 

-EkJ-I 
lI u (n) _ u II = O( n L ) (k>O). 
U ~k ~k -

" [2£J 
Corollary. 2.llu~n) - uk II = o( { M~} ). 

Theorem 4. Take the vectors wen) and r(n) so as to satis-
i i 

n 
fy l w(n)r,(n»O for all n. Then. for fixed k, iO' 'i'l: .. O','I:=n-L+l 
we have, as n-+oo, 

(k~l, n-mL-+oo) 

(k>O) • -
Corollary 3. 

Remark. We can prove that ~ E(n)W(n)w(n»O for any 
L 0''1: iO' i'l: O','I:=n-L+I 

nand i such that n>L and l~i~n. Therefore the assumption of 

Theorem 4 will be satisfied for sufficiently large n. 

4. Observation for the Other Equation 

Consider an operator A defined by 

Au= -u" + q(x)u, u(x)=u(-x), U(X)EL 2 (_oo,oo) 

where q(x) is a polynomial of degree 2L such that q(x»x 2 -a 

for some constant a>O and q(-x)=q(x). (The case of q(x)=x 2 + 

ax 4 (O<a<l) has been treated by Bazley and Fox[2].) Then 

A(O)u= -u"+(x 2-a)u and A'=A-A(O) are suitable decomposition. 

We have 
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,(0) __ ' 4 
I\i i- 3- a., 

where 
, m x 2 dm _x2 

H (x)=(-l) e -e (the m-th Hermite polynomial). 
m . dxm 

By the reccurence relation 2xHm = 2mHm_l +Hm+l or 

we see that the conditions (1) are satisfied. Further we 

have 

= 0(1) 

since x2 

I Hm (x) I ~ e 2" /2m+ 1 1IDi. 

On the other hand, the relation (5) shows that Bij=O(iL). 

Hence, if n is large, we may roughly conclude from (4) that 

E(n)= O(nL) (n-L+l<i,j<n). Therefore, even if the methods 
ij = -

are convergent, the rate of convergence in this case may be 

rather slow, compared with the case of the finite Hill oper-

ator. The more precise information will be given 

elsewhere. 
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On the Superiority of the Trapezoidal Rule for the 

Integration of Periodic Analytic Functions 

§l Introduction 

Masatake Mori 

(Received 22 January, 1974) 

It is· well-known that the trapezoidal rule with an 

JJ 

equal mesh size. yields a result with remarkably high accuracy 

when applied to the integration of a periodic analytic 

function over its period. Frequently this rule is even 

called the "best" rule with rather vague definition of the 

word "best". Several attempts seem to have been made to 

show the "best" property of the trapezoidal rule (e.g.[ll) 

by comparing the results with other various well-known 

formulas such as Gauss rules. 

In the present paper we will define the best rule for 

numerical integration of periodic analytic functions over 

its period in terms of the asymptotic decay rate of the 

exponent of the characteristi~ function of the error [3], 

and show that the trapezoidal rule is the best under this 

definition in the similar way as in the preceding paper [3]. 

§2 The complex integral representation of the error 

Let f(x) be analytic over [a,b] and periodic with period 

b-a. We consider the integral of f(x) over its period: 

I = f: f(x)dx (2.1) 
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J? 

We write an approximate formula for (2.1) as follows: 

(2.2) 

where ak and Ak are the sampling points and the weights, 

respectively. The error 6I n=I-In of (2.2) can be expressed 

in the form of a complex integral: 

Theorem 1 Let f(x) be analytic over [a,b] and periodic with 

period b-a. Then 

61 n = Sba f(x)dx - f Akf(ak) 
k=l 

= ~ 1. '¥(z)f(z)dz - ~ r 
t;1T1 C t;1T1 J C 

where 

{ -7Ti 1m z > 0 
'¥(z) .. 

7Ti 1m z < 0 

00 n 

'¥ (z) = 2: {I: Ak( 1 + 
n m=-oo k=l z-ak-m(b-a) 

(2.3) 

(2.4) 

1 ) } 
ak+m(b-a) 

(2.5) 

The path C of the integral (2.3) consists of two line segments 

C1 and C3 parallel to the real axis as shown in Fig.l and is 

taken in such a way that there exists no singular pOint of . 
fez) between the two line segments. 

a+in 
a: 

i 

, 
a-in':-----~~~-----: b-in' 

C3 

Fig.l The path C of the integral (2.3) 
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Proof The first term of (2.3) is evident since, if we 

deform the path by letting n~O and n'~O, then we have 

'Y ( z) f ( z ) d z = J b f (x) dx 
a 

(Z.6) 

It can be seen that the right hand side of (Z.5) 

converges uniformly on compact sets not containing any of 

the poles and defines a meromorphic function. Since fez) 

13 

and 'Y (z) are both periodic, 'Y (z)f(z) is also periodic with n n 

period b-a so that we can join the lines CI and C3 with no 

change of ~In by two line segments C2 and C4 parallel to the 

imaginary axis and form a rectangular contour C' with 

positive orientation. If a sampling point is located at 

the end point x=a or x=b, Cz and C4 are deformed slightly 

in such a way that they do not pass through the sampling 

point and that they have the same shape (Fig.2). Then 

from the residue theorem, 

(2. 7) 

and we have (2.3) from (2.6), which completes the proof. 

Fig.Z The path C' 

We call 

(2.8) 

- 3 -
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the aharaateristia funation of the error [3]. In case of 

the trapezoidal rule with an equal mesh size of h=(b-a)/n, 

we have 

4> (z) 
n 

={-lTi -

lTi -

lTcotKz = - 21T i 1m z > 0 l-exp(-21Tiz!h) 
(2.9) 

+2lTi 1m z < 0 l-exp(+2lTiz/h) 

with the aid of the partial fraction expansion of cotangent 

function. Note that ~n(z) of the trapezoidal rule has no 

zeros on the finite z-plane. 

§3 Asymptotic decay rate of the exponent of the characteristic 

function and the best formula 

When 1m z»h in the upper half-plane, ~n(z) of (2.9) 

can be approximated by 

I~ (z)1 ~ 2lTexp(-2lTy/h), y=Im z n 

and hence the quantity 

2lT 
~ n ' z=x+iy (3.2) 

can be regarded to define the decay rate of the exponent of 

I~ (z)1 in the upper half-plane. 
n 

Since ~ (z)=~(z), we .n n 

will consider the decay rate only in the upper half-plane. 

It would intuitively be clear that ~n(z) of a useful formula 

must converge to +lTi as 1m Z+±oo with all its derivatives and 

that generally a formula having a larger decay rate of the 

exponent of the characteristic function results in a smaller 

- 4 -
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error when applied to the integration of a certain fixed 

function. And hence the decay rate can be considered to 

be a criterion to define the best formula. Accordingly 

we define the average decay rate of the exponent of I~ (z)/ n 

at a distance d from the real axis in the upper half-plane by 

red) 
I d J b+id 

= - D7a . a- logl~ (z)/dz , 
a+,1d y n 

and define the asymptotic decay rate by 

r = lim red) 
d-+oo 

(3.3) 

(3.4) 

Now we call a formula having the largest asymptotic 

decay rate the best formuZa. 

Theorem 2 The trapezoidal rule with an equal mesh size is 

the best formula for the integration of a periodic analytic 

function over its period b-a among formulas having the same 

number of sampling points on [a,b). 

Proof Consider an integral 

(3.5) 

where ~ (z) is defined by (2.5). 
n 

The path r is taken to 

be a rectanglar contour with positive orientation with.comers 

at b+id, a+id, a-id' and b-id' as shown in Fig.3. 

Fig.3 The path r 
of (3.5) 

a+id r l b+id 

r 21,-_a ___ ~: ___ b~i r 4 
a-id' b-id' 

When a 
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sampling point lies on x=a or on x=b, r is modified as in 

the proof of Theorem 1. Now n is the number of the sampling 

points. Note that n is nothing but the number of poles of 

TIi+~ (z) located inside r. 
n Then from the principle of the 

argument we have 

(3.6) 

where n z is the number of zeros of TIi+~n(z) inside r. Since 

~~(z)/{TIi+~n(z)} is periodic with period b-a, the integrals 

along r 2 and r4 cancel each other for any value of d and d'. 

Since ~ (z) must converge, on the other hand, to the constant 
n 

function TIi as d'~oo, the integral along r3 can be made as 

small as one wishes by letting d'~. 

J b+id 

J = 2;i a+id 

Hence we have 

(3.7) 

as d'~~. Since log{ni+~n(z)} is analytic along r l , we can 

replace d/dz by partial derivative a/ax so that 

J = 
Jb+id 

2;i a+id 

= 
Jb+id 

2;i a+id 

= 
Jb+id 

2;i a+id 
.J logl~n(z)ldz 

1 Jb+id 
_ ~ ~ya logl~n(z)ldz -'on .d rJV a+l 

(3.8) 

in view of Cauchy-Riemann equation. We know that J is real 
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from (3.6) and hence the first term of the right hand side 

of (3.8) is zero. Accordingly, by letting d~oo, we obtain 

an important relation between n-n and the asymptotic decay 
z 

rate r: 

(3.9) 

17 

This shows that the asymptotic decay rate r cannot be larger 

than ~ ~nd the maximum value ~ is attained by such v-a o-a 

-~i-~n(z) that satisfies n =0 i.e. that has no zeros in the 
z ' 

finite z-p1ane, if such -~i-~n(z) exists. We have, on the 

other hand, already seen that -vi-inez) of the trapezoidal 

rule has no zeros in the finite z-plane, and hence the 

trapezoidal rule is the best formula, in which r_2~n_2~ -o::a-n' 

§4 Discussions 

The characteristic function of the error of Simpson's 

formula 

Is = ~{f(a)+4f(a+h)+2f(a+2h)+4f(a+3h)+'" +f(b)} 

= jh{jf(a)+f(a+h)+f(a+2h)+"'+if (b)} 

-~(2h) {~f(a)+f(a+2h)+f(a+4h)+" '+jf(b)} , h=b~a (4.1) 

is given by 

Im z > 0 

(4.2) 
1m z < 0 , 

which can be approximated as 

- 7 -
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I <f>sCz)I ~ ;nexpC-nlyl/h) 11m z I» h (4.3) 

Comparing this with (3.1) we see that the decay rate of the 

exponent of (4.3) is half of that of (3.1). We see this 

situation also from the point of (3.9). Indeed, if we put 

<f>s(z)=O in (4.2) for 1m z>O, we find an infinite array of 

zeros of ~s(z) in the upper half-plane arranged with 

distance of 2h=2(b-a)/n at 

z = i~log 3 + 2jh ,j=O,±1,±2~ .•. (4.4) 

This means n z=n/2, and hence the asymptotic decay rate for 

Simpson's formula is 

r = nn 
b-a 

1T = n 

from (3.9). 

(4.5) 

It should be remarked that there may happen to be a 

case where an approximate formula other than the trapezoidal 

rule gives better result for certain analytic periodic 

functions. In fact Simpson's formula (4.1) would yield an 

exact result except the round-off error when applied to a 

meromorphic function having simple poles the location of 

which coincides with that of zeros (4.4) of <f>s(z). Such 

a ~ase, however, is rather exceptional and , since the 

asymptotic approximation of I <f>nCz)I such as (3.1) or (4.3) 

becomes more precise as h is made smaller, the trapezoidal 

rule would become superior to any other formulas when a 

high precision is required so that the number of the sampling 

- 8 -



points is sufficiently large. 

Finally we show a numerical example that shows the 

superiority of the trapezoidal rule. To the integral 

representation of Bessel function 

(4.6) 

we applied the trapezoidal rule, Simpson's formula, Fi10n's 

formula [2J and Legendre-Gauss rule. The number of the 

sampling points of each formula is chosen to be 16. The 

computed absolute errors are as follows: 

Integration f~rmula 

Trapezoidal rule 

Simpson's formula 

Fi10n's formula 

Legendre-Gauss rule 

References 

Absolute error 

3.7X10- 19 

2.5x10- S 

2.4x10- 3 
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Numerical Investigation of 1/2-Subharmonic Solutions 

to Duffing's Equation 

By 

Yoshitane SHINOHARA 
(Received Jan. 1~, 1974, Revised Feb. IS, 1974) 

1. Introduction 

The present paper is concerned with 1/2-subharmonic 

solutions to Duffing's equation 

(1 • i ) d 2 x dx 3 
d t Z +a . crt +bx+cx =e· cos wt, 

where b>O, c>O and e>O. 

21 

The mathematical proof for the existence of a 1/2-sub­

harmonic solution to (1.1) with damping absent, that is, with 

a=O, has been given by C. T. Taam (6), T. Shimizu OJ and W.S. 

Loud (2). But, as far as the author is aware, good approxi­

mations to 1/2-subharmonic solutions are not yet found and 

the mathematical proof for the existence of a 1/2-subharmonic 

solution is not yet given to Duffing's equation (l.l) with 

damping present, that is, with a*O. 

In the present paper, good Galerkin approximations to 

the subharmonic solutions in question will be given by means 

of Galerkin's procedure established by M. Urabe(7J and of the 

author's program C5J of finding solutions to systems of non­

linear equations, and the mathematical guarantee for the 

existence of the corresponding exact subharmonic solutions 

will be also given by the use of Urabe' s existence theorem (7]. 

Replacing wt by t, we rewrite (l.l) as follows: 

(1.2) 
J 

d. x 
d t~ 

+ ~. dx + ~'(bx+cx3)= ~ cos t. 
w dt w w 

To a 1/2.subharmonic solution to (1~1), corresponds a 

solution to (1.2) of the form 
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(1.3) 

Hence, replacing t by 2t in (1.2) and (1.3), we Can 
reduce the problem to the one to find a solution of the form 

(1 .4) 

to the equation 

(1.5) 

where 

The equation (1.5) can be rewritten in the following form 

(1.6 ) 

where y=/Yx. The equation (1.5) oan be also rewritten in a 
stand.ard form as follows: 

(1.7) 

where 

dz 3 +0' . -- +z+£· Z =oos dT 

Ii3 ·t=T , -t-x=z, la =0' , 

VT , 

2 =£ , --=v 
18 

As for 1/2-subharmonio solutions to (1.5) with damping 
present, C. Hayashi ell suggests some interesting properties 
from his phase-plane analysis, but his assertions are made 
from rough approximate solutions of the form 

p 
- 3·00S 2t 

without givlng the proof for the existence of 1/2-subharmonic 
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solutions. Hence, his assertions do not seem to be of enough 

mathematical confidence. 

In the present paper, at first, we compute Galerkin 

approximate solutions of the form 

by the use of the author's geometric method C4J,l5) and then 

, starting from these rough approximate solutions, we compute 

the approximations to the solutions of the form (1.4) by the 

use of Galerkin's procedure established by M. Urabe (8). 
After having found an approximate solution by the above 

procedure, it is necessary for the ~ompletion of the process 

to verify the existence of an exact solution near the appro­

ximate solution obtained. and to find an error bound for the 

approximate solution obtained.. Using the method developed by 

M. Urabe (7) , we have checked the existence of the exact 

subharmonic solutions and we have calculated the error bounds 

for the approximate solutions. In Tables 2--8, c5 shows the 

error bound obtained in this way. In Tables 1 .... 9, the stabi,", 

lity of the subharmonic solutions are also shown. 

The computations in the present paper have been carried 

out by the use of TOSBAC 3400 at the Computing Institution of 

the Reseach Institute for Mathematical Sciences, Kyoto 

University. 

The author expresses his hearty gratitude to Professor 

M. Urabe for his constant advice and encouragement. 

The author also wishes to acknowledge the .assistance of Miss. 

T. Takahashi, Mr. Y. Kono and Mr. Y. Nakatani at the Compu­

ting Institution of the Research Institute for Mathematical 

Sciences, Kyoto University. 
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2. Numerical Computation 
In his paper (8), M. Urabe established a Galerkin 

procedure to compute numerically the solutions of the form . 
(1.4) to the equation (1.5) by solving the so-called deter-
mining equation by the Newton method. In the present paper, 
we shall use his procedure. According to Urabe's procedure, 
we rewrite equation (1.5) in the first order system 

. 
(2.1 ) {

X =y, 

y=X(x,y,t) 
(. =d Id t) 

where X(x,y,t)=-6X-YX3-ay+p.cos 2t. 
For (2.1), a Galerkin approximation of order m is of the form 

(2.2) {
X(t)=c1 + I. (c2n,sin nt +c2n+1· cos nt), 

y(t)= t (-n.c2 +1· sin nt +n·c2 ·cos nt). 
'>\. .. , n n 

Hence, for (2.2), the determining equation for the Galerkin 
approximations of order m can be reduced to the following 
equation 

1'" 
f 1 (C)= ~1f 5 X (x (t ) ,y (t ) , t 1 d t =0, 

o 

(2.3) 
1 (llt 2 

f 2n (C)=-;-) X(x(t),y(t),t)-sin nt dt+n 'c2n=0, 
o 

1.1t 

f 2n+1 (C)=; ~ X(x(t) ,y(t) ,tl.. cos nt dt+n~c2n+l=0 
o 

(n=1,2, ,m), 

where C=(c1 ,c2 , - ~ - ,c2m,c2m+l). 

In order to apply the Newton method to the system (2.3), 
it is necessary to find the starting approximate s91utions to 
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the determining equations (2.3). For this purpose we.oon­
sider a Galerkin approximation (2.2) with m=2, that is, 

(2.4) 

Then the determining equations for (2.4) are as follows: 

(2.5) 

) ) 2 2 
f1 (01,02,03,04,05)=~01+y(01+1.50102+0.75°305+1.5°1C) 

222 +1.50104+1.50105+1.5020)04-0.750205)=0, 

) 2 
f2(01,02,03,04,05)=(a-1)02-~03+y(0.7502+30102 

222 
+0~75°203+1.5°204+1.50205-3010205+3010304)=0, 

3 2 
f3(01,02,03,04,05)=~02+(a-l)03+y(0~7503+30103 

22· 2 
+0.750203+1.50304+1.50305+3010204+3010305)=0, 

f 4 (01 ,02 ,03 ,04,05)=( a-4)04-2Cl05+Y(0. 7504+30i04 

222 
+1.50204+1.50304+0.750405+3010203)=0, 

f5(01,02'03,04,05)=2a04+(a-4)05-P+Y(0.750~+30i05 

2 2' 2 2 2 
+1.50205-1.50102+1.50305+1.50103+0.750405 )=0. 

For a system of the above determining equations with 
a=o • 1 , B =0. 3 , Y =0. 7, P=2. 0 
that is, 

0=0.18), E=10).704, v=3.651, 
we have oomputed the eleven solutions shown i:t:J. Table 1 1n the 
bounded region 10i'~) (i=1,2,3,4,5), by the use of the 
fortran program oonstruoted in the previous paper (5). 

Now from the form of (1.5), we oan easily see,.that if 
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x(t) is a solution to (1.5), then x(t+rr), -x(t+{'31T/2)J and 
-X(t+{1T /2)1 are also solutions to (1.5), and that if x(t) is 
a Galerkin approximation of 2~-periodic solution to (1.5), 
then x(t+7r ), -X(t+('31T /2)) and -X(t+(1T /2)J are also Galerkin 
approximations of 2TI-periodic solutions to (1.5) with the 
same order as x(t). 

For the solutions to (2.5) shown in Table 1, we readily 
see that the Galerkin approximations x2 (t), x 5 (t) andx6(t) 
corresponding to the 2nd, 5th and 6th solutions in Table 1 

are equal respectively to xl (t+1T), -xlCt+('31T/2)1 and -xl Ct+ 
(1T/2») , where x1 (t) is the Galerkin approximation correspon­
ding to the first solution in Table 1. 
Likewise we readily see that the Galerkin approximations x4( 

t), x7 (t) and x8 (t) corresponding to the 4th, 7th and. 8th 
solutions in Table 1 are equal respectively to X3 (t+1T), -x3C 
t+ (J1T /2 )land -x3 C t+ (1T /2)1, where x3 (t) is the Galerkin 
approximation corresponding to the '3rd solution in Table 1. 

The Galerkin approximations x9 (t), xl0 (t) and xll (t) 
corresponding to the 9th, 10th and 11th solutions in Table 1 
will be supposed to be the Galerkin approximations of 
harmonic solutions to (1.2). 

Starting from the solutions to (2.5) shown in Table 1, 
by the use of the techniques described in the paper ( fa) we 

have computed the Galerkin approximations of high order for 
subharmonic solutions and, harmonic solutions. However, by 

the reason mentioned above, we have not carried out the com:­
putations starting from the 2nd, 4th, 5th, 6th, 7th and 8th 

solutions in Table 1. The results are shown in Tables 2 and 
3. In these tables, for each approximate solution is given 
an error bound G such that 

I 

C \ x(t) _ X(t)\2 + ri(t) _ ~(t) ,l ]-r~ <5, 

A 
where • =d/dt and, x (t) is an exact solution corresponding to 
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the approximate solution ~(t). 

3. The Effect of Nonlinear Term on the Subharmonic Solutions 

In order to consider the subharmonic solutions to weakly 

nonlinear equation (1.5), that is, equation (1.5) with IYK<l, 

we pursue a behavior of the stable subharmonic solution x3 (t) 

obtained. in the previous section as Y ~ O. 

From the last equation of (2.S) we have 

1.S yc~(cS-cl)+l.SY c~(cS+cl)=P-2 aC4+(4-8)cS- YC S (0.75 c~ 

2 2 
+3 c 1 +O.7Sc4)· 

Taking account of the numerical results, we may consider that 

the value of Cs is close to -P{3 which does not vanish for 

P=2.0. Hence, we have 

(1- :~ ) c~ + (1 + :~ ) oj = 
2P-4ac4+(8-28)CS 

Jyc" 

Letting a~ 0 and. y-t 0, we see from the results of the numeri­

cal computations that Ic1 /cS 1<1 and. IC4'« 1. 

Hence, for small values of y and lal , we may estimate the 

amplitude Jc~ +c~ of the principal part of 1/2-subharmonic 

solution as follows: 

(J .1 ) j c~ +c~ 

The value of the right side of (J.l) tends to infinity as Y 

approaches zero. Hence, the amplitude of the subharmonic 

solution increases as the value of y decreases. 
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Fig. 2 shows this phenomenon by waveforms of the stable 

subharmonic solutionXJ(t) for various values of y • 

These solutions are shown in Tables 4",6. 

These results show that 1/2-subharmonic solutions to 

nuffing's equation do not exist in a neighborhood of periodic 

solutions to the linearized equation. The fact tells us that 
the methods of perturbation which seek for solutions in a 

neighborhood of solutions to the linearized equation are not 
adequate for the computation of 1/2-subharmonic solutions 

to nuffing's equation. This may be the main reason why 1/2-

subharmonic solutions to nuffing's equation have been never 

computed so far. 
M. Urabe (9] proves that for sufficiently small values 

of £ and 0(>0) there exists only the lj3-subharmonic 
solution to (1.7), except for the solutions z(t) such that 
I z (t)l-+ 00 or \dz /d t \ ~ 00 as £ ~ O. 

Our results illustrate affirmatively his result. 

From (J.l) the amplitude /c~ +cj of the principal part 
I 

of 1/2-subharmonic solutions tends to infinity with order y-~ 

as y approaches zero. But the value of IY. Ic~ +cj is 
nearly constant as y approaches zero. The fact tells us 

that it.is better to compute 1/2-subharmonic solutions to 

(1.6) instead. of (1.5) for small values of (l and y • 

Taking account of the fact, we have computed. the subharmonic 

solutions to (1.6) with a=O.OOOOl, 8=0.3, Y=0.0000675 and 

P=2.0. The results are shown in 'l'able 9. 
Tables 2", 9 show that in the Fourier series of the 

subharmonic solution in question, 'the t'irst five terms domi..., 
nate the remaining ones in strongly nonlinear cases, but the 

first seven terms dominate the remaining ones in weakly non­
linear cases. The fact tells us that one can know the 

qualitative character of l/c-subharmonic solutions to strong­

ly nonlinear nuffing's equation by investigating the 
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character of the Galerkin approximations of the form 

x(t)=c1+c2 ·sin t +c3 ·cos t +c4·sin 2t +c5·cos 2t, 

29 

but in weakly nonlinear cases one must take the more accurate 
Galerkin approximations for the same purpose. 

Remark. The effect of the damping term in the stable 
1/2-subharmonic solution x3 (t) of the form 

X3 (t )=c1+ 'f c2 . sin nt + 
"":1 n 

00 

E c2 +1' cos nt 
'1'1=\ n 

00 

appears strongly in the terms E c -sin nt "'-\ 2n • 
When the damping is absent, we observe in Tables 7 and 8 that 

'f c2 -sin nt ~O, 
"" .. , n 

but when the d.amping is present t we observe in Tables 4 and 6 
that 

00 E c2 . sin nt VI-' n . 
is not small and it increases as the value of y decreases. 
In this case, however, 

! .. ,c2n+1" cos nt 

is effected very little by the damping term. 
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01 °2 °3 °4 --- -----------
1: 0.0923726693 -0.2752659728 -0~6784945626 0.0597774582 
2: 0.0923726692 0.2752659730 0.6784945625 0.0597774582 

3: 0.1285965000 -0.1825706906 -0.7583156503 0.0632102469 
4: 0.1285964999 0.1825706907 0.7583156503 0.0632102469 

5: -0.0923726692 0.6784945625 -0.2752659730 0.0597774582 
6: -0.0923726693 -0.6784945626 0.2752659728 0.0597774582 

7: -0.1285965000 0~75831565d5 -0~1825706905 0~0632102469 
8: -0.1285964999 -0.7583156502 0.1825706909 0.0632102469 . . 
9: 0.0000000000 0.0000000000 O~OOOOOOOOOO 0~0319575661 

10: 0.0000000000 .0.0000000000 O~OOOOOOOOOO 0.8312796602 
11: 0.0000000000 0.0000000000 0.0000000000 0.5462865832 

Os 
1 : -0.6783580768 
2: -0.6783580768 

3: -0.6899371440 
4: -0.6899371440 

5: -0.6783580768 
6: -0.6783580768 

7: -0.6899371441 
8: -0.6899371440 

9: -0.5644062145 
10: 2.760755463 
11: -2.272539725 

Table 1 
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Periodic solutions to (1.5) with a=0.1,B=0.3,Y=0.7,P=2.0: 

1) Xl (t)=0.0928604913-0.2729725113 sin t -0.6622053451 
+0.0592095043 sin 2t ~0.6775492475 
+0.0081759893 sin 3t -0.0104856750 
-0~0081146901 sin 4t -0.0070125277 
-0~0015293305 sin 5t -0.0075428283 
+0.0005026926 sin 6t -0.0017641013 
-0.0000735301 sin 7t -0.0001068038 
-0.0000611871 sin 8t -0.0000950798 
-0.0000011729 sin 9t -0~0000382199 
+0.0000008986 sin 10t-0.0000054232 
-0.0000010457 sin l1t-0.0000011578 
-0~0000002502 sin 12t-0~0000006431 
+0~0000000026 sin 13t-0~0000001539 
-0~0000000098 sin 14t-0~0000000231 
-0~0000000066 sin 15t-0~0000000092 
-0.0000000009 sin 16t-0~0000000033 
-0.0000000001 sin 17t-0.0000000006 
-0.0000000001 sin 18t-0.000000000l 

o=1.4xl0-7, Stability: unstable. 

2)X3(t)=0.1325574730-0.1765810119 sin 
, +0.0627505778 sin 

+0.0065184359 sin 
-0.0057077000 sin 
-0~0002877279 sin 
+0.0005555277 sin 
-0.0000489424 sin 
-0~0000306596 sin 
+0~0000061376 sin 
+0~0000015217 sin 
-0~0000005539 sin 
-0.0000000308 sin 
+0~0000000388 sin 
-0.0000000016 sin 
-0.0000000021 sin 
+0.0000000004 sin 
+0.0000000001 sin 

o=1.8xl0-7 , Stability: stable. 

Table 2 
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-0.0000000001 

t -0.7455563965 
2t -0.6894792968 
3t -0.0122670665 
4t -0.0096779756 
5t -0.0085009813 
6t -0.0019074934 
7t -0 '. 0001903'122 
8t -0 '.0001267016 
9t -0.0000442724 
10t-0.0000075120 
11t-0.0000020591 
12t-0.0000008552 
13t-0.0000002050 
14t-0.0000000445 
15t-0.0000000156 
16t-0.0000000047 
17t-O'.0000000011 

-0.0000000003 
-0.0000000001 

cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 

cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 
cos 

t 
2t 
3t 
4t 
5t 
6t 
7t 
8t 
9t 
lOt 
llt 
12t 
13t 
14t 
15t 
16t 
17t 
18t 
19t, 

t 
2t 
3t 
4t 
5t 
6t 
7t 
8t 
9t 
lot 
l1t 
12t 
13t 
14t 
15t 
16t 
17t 
18t 
19t, 
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Fig. 1 Waveforms of the 1/2-subharmonic solutions 

given in Table 2. 
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Periodic solutions to (1.2) w1tha =0.1~ =O.l,y =0.7,P=2.0: 

11 x9{t)=0.0000000001+0.0319635845 sin t -0.5644528144 cos t 
+0.0001659289 sin 3t -0.0008785586 cos lt 
+0.0000004612 sin 5t -0.0000014402 cos 5t 

6 =4. 7 l( 10-9 , 
+0.0000000011 sin 7t -0.0000000023 cos 7t. 

Stability: stable. 

2') x10 ( t )=0.0000000002+0.8085998729 sin t +2.6920234635 cos t 
+0.1077254917 sin 3t +0.0940200536 cos 3t 
+0.0067635484 sin 5t +0.0009948792 cos 5t 
+0.0002990601 sin 7t -0.0001350083 cos 7t 
+0.0000085908 sin 9t -0~0000132058 Cos 9t 
+0.0000000051 sin llt-0.0000007564 cos lit 
-0 '.0000000194 sin 13t-0~0000000307 cos 13t 
-0 '. 0000000016 sin 15t-0.0000000007 Cos 15t 

·-8 -0.0000000001 sin 17t, 
6 =9.11(10 , Stability: stable. 

3) x,,(t)=0.0000000001+0.530508 5608 sin t -2.2314158468 cos t 
-0.0000000001 sin 2t 
+0.0462811064 sin 3t -0.0527460092 cos 3t 
+0.0019772093 sin 5t -0'.0007726566 cos 5t 
+0 '.0000635606 sin 7t +0.0000067958 cos 7t 
+0.0000016033 sin 9t +0'.0000010635 cos 9t 
+0.0000000281 sin 11 t+O '.0000000506 cos llt 

6 =3 .4/C 10-8 , 
+0.0000000017 cos 13t, 

Stability: unstable. 

Table 3 

-14-



35 

Periodic solutions to (1.5) witha =0.001,s=0.3,P=2.0: 

X3(t)=0.2930123755-1.2590140124 sin t -11.4799570291 cos t 
+0.0341190409 sin 2t -0.6997695126 cos 2t 
-0.1130152934 sin 3t -0.3336762141 cos 3t 
-0.0052523794 sin 4t -0.0329736966 cos 4t 
-0.0054219996 sin 5t -0.0101881061 cos 5t 
-0.0005610178 sin 6t -0.0014392693 cos 6t 
-0.0002349807 sin 7t -0.0003180846 cos 7t 
-0.0000342579 sin 8t -0.0000535047 cos 8t 
-0.0000098891 sin 9t -0.0000100401 cos 9t 
-0.0000017126 sin 10t-0~0000018143 cos lOt 
-0.0000004099 sin llt-0.0000003113 cos llt 
-0.0000000771 sin 12t-0~0000000569 cos 12t 
-0.0000000167 sin 13t-0~0000000092 cos 13t 
-0.0000000033 sin 14t-0~0000000016 cos 14t 
-0.0000000007 sin 15t-0.000000OO02 cos 15t 
-0.0000000001 sin 16t, 

0=5.6 x10-6 , Stability: stable, where y=0.00675)(1.0. 

X3(t)=0.2961798507-0.1083332858 sin t -5.127519794 2 cos t 
. +0.0071156489 sin 2t -0.6962044099 cos 2t 

-0.0093081401 sin 3t -0.1496922067 cos 3t 
-0.0009722017 sin 4t -0.0322234685 cos 4t 
-0.0004426696 sin 5t -0.0070009504 cos 5t 
-0.0000999061 sin 6t -0.0015101723 cos 6t 
-0.0000260509 sin 7t -0.0003249848 cos 7t 
-0.0000063492 sin 8t -0.0000699167 cos 8t 
-0.0000015387 sin 9t -0.0000150223 cos 9t 
-0.0000003674 sin 10t-0.00oo032274 cos lot 
-0.0000000869 sin llt-O.0000006931 cos 11 t 
-0.0000000204 sin 12t-0.0000001488 Cos 12t 
-0.00000000J..J.7 sin 13t-0.0000000319 Cos 13t 
-0.0000000011 sin 14t-0.0000000069 cos 14t 
-0.0000000003 sin 15t-0.0000000015 cos 15t 
-0.0000000001 sin 16t-0.0000000003 cos 16t 

-0.0000000001 cos 17t, 

0= 5 .. 3 IC 1 0 -7 , Stability: stable, where y =0.00675 l( 5.0. 

Table '4 
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Periodic solutions to (1.5) with a=0.001,8=0.3,P=2.0: 

X3(t)=0.2914436944-0.0378554054 sin t -3.5922663954 cos t 
+0.0037432939 sin 2t -0~7002181244 Cos 2t 
-0.0030002747 sin 3t -0.0995051261 cos 3t 
-0.0004751640 sin 4t -0.0313425705 cos 4t 
-0.0001337269 sin 5t -0.0065898220 Cos 5t 
-0.0000441812 sin 6t -0.0015028645 cos 6t 
-0.0000107546 sin 7t -0.0003512176 cos 7t 
-0.0000028383 sin 8t -0.0000793848 cos 8t 
-0.0000007390 sin 9t -0.0000181357 cos 9t 
-0.0000001854 sin 10t-0~0000041449 Cos lOt 
-0~0000000467 sin l1t-0~0000009443 cos l1t 
-0.0000000116 sin 12t-0~0000002154 cos 12t 
-0.0000000029 sin 13t-0~0000000491 cos 13t 
-0.0000000007 sin 14t-0~0000000112 cos 14t 
-0.0000000002 sin 15t-0~0000000026 cos 15t 

-0~0000000006 cos 16t 
-0.0000000001 cos 17t, 

6=2.2)(10-7 , Stability: stable, where y=0.00675l(10.0. 

x3(t)=0.1729240185-0.0013345231 sin t -0.8434488108 cos t 
+0.0006816817 sin 2t -0~7085991147 cos 2t 
+0.0000573890 sin 3t -0.0152417827 cos 3t 
-0.0000449412 sin 4t -0.0121875975 cos 4t 
+0.0000049194 sin 5t -0.0094382956 cos 5t 
+0.0000061983 sin 6t -0~0021498124 cos 6t 
-0.0000002845 sin 7t -0~0002818746 cos 7t 
-0.D000000987 sin 8t -0.0001522820 cos 8t 
+0~0000001164 sin 9t -0.000052066 9 cos 9t 
+0~0000000236 sin 10t-0~0000105388 cos lot 
-0.0000000010 sin llt-0.0000028904 cos llt 
+0.0000000014 sin 12t-0.0000010626 cos 12t 
+0~0000000008 sin lJt-0.00000028J3 cos lJt 
+0.0000000001 sin 14t-0.0000000699 cos 14t 

-0.0000000218 cos 15t 
-0.0000000066 cos 16t 
-0.0000000017 cos 17t 
-0.0000000005 cos 18t 
-0.0000000001 Cos 19t, 

6=7.0",10-8 , Stability: stable, where y=0.00675x 100.0. 

Table 5 
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Periodic solutions to (1.5) with CI. =0.001 J3 =0.3 ,P=2.0: 

X3(t}=0.1113354509-0.0010744200 sin t -0.5514182480 cos t 
+0.0005308837 sin 2t -0.6737278095 cos 2t 
+0.0000737828 sin 3t -0.0136047713 cos' 3t 
-0.0000344817 sin 4t -0.0055800058 cos 4t 
-0.0000018926 sin 5t -0.0076511441 cos 5t 
+0.0000064399 sin 6t -0.0023812607 cos 6t 
+0.0000002092 sin 7t -0.0001772272 cos 7t 
-0.0000002303 sin 8t -0.0000978628 cos 8t 
+0.0000000720 sin 9t -0.0000496638 cos 9t 
+0.0000000385 sin 10t-0.0000107395 cos lOt 
-0.0000000005 sin llt-0.0000018419 cos llt 
-0.0000000001 sin 12t-0.0000008334 cos 12t 
+0.0000000008 sin 13t-0.0000002810 cos 13t 
+0.0000000002 sin 14t-0.0000000598 cos 14t 

-0.0000000156 cos 15t 
-0.0000000057 cos 16t 
-0.0000000016 cos 17t 
-0.0000000004 cos 18t 
-0.0000000001 cos 19t? 

6 -8 6=7. )C 10 ,Stabili ty: stable, where y=O. 00675 K 140.0. 

X3(t}=0.0341643187-0.0014957675 sin t -0.2491740565 cos t 
+0.0003984503 sin 2t -0.6185496392 cos 2t 
+0.0000860099 sin 3t -0.0092860164 cos 3t 
-0.0000264466 sin 4t -0.0009737959 cos 4t 
-0.0000170626 sin 5t -0.0036648354 cos 5t 
+0.0000047346 sin 6t -0.0021630661 cos 6t 
+0.0000006181 sin 7t -0.0000844859 cos 7t 
-0.0000003103 sin 8t -0.0000226179 cos 8t 
-0.0000000801 sin 9t -0.0000241399 cos 9t 
+0.0000000300 sin 10t-0.0000084863 cos lOt 
+0.0000000020 sin l1t-0.0000005800 cos 11 t 
-0.0000000021 sin 12t-0.0000002061 cos 12t 
-0.0000000003 sin 13t-0.0000001293 cos 13t 
+0.0000000002 sin 14t-0.0000000348 Cos 14t 

-0.0000000037 cos 15t 
-0.0000000014 cos 16t 
-0.0000000006 cos 17t 
-0.0000000002 cos 18t, 

\5 =1.2)( 10-7 , Stability: stable, where y =0.00675)( 180.0. 

Table 6 
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Periodic solutions to (1.5) with a=0,B=0.3,P=2.0: 

X3 (t)=0.300262761 J+0.0000000306 
-0.0000000011 
+0.0000000027 
+0.0000000001 
+0.0000000001 

sin t 
sin 2t 
sin 3t 
sin 4t 
sin 5t 

-11.5505768414 cos t 
-0.6923730347 cos 2t 
-0.3526089531 cos 3t 
-0.0328902369 cos 4t 
-0.0116843449 cos 5t 
-0.0015252088 cos 6t 
-0.0004043236 cos 7t 
-0.0000630335 cos 8t 
-0.0000144947 cos 9t 
-0.0000024908 cos lot 
-0.0000005309 cos lit 
-0.0000000963 cos 12t 
-0.0000000197 cos 13t 
-0.0000000037 cos 14t 
-0.0000000007 cos 15t 
-0.0000000001 cos 16t, 

5 -6 6 0= .0)( 10 , Stability: neutral, where y =0.00 75)( 1.0. 

X3(t)=0.2964666764+0.0000000032 sin t 
-0.0000000003 sin 2t 
+0.0000000002 sin 3t 

-5.1288186026 cos t 
-0.6959386175 cos 2t 
-0.1500079715 cos 3t 
-0.0322212179 cos 4t 
-0.0070228217 cos 5t 
-0.0015132373 cos 6t 
-0.0003263119 cos 7t 
-0.0000702336 cos .8t 
-0.0000151121 cos 9t 
-0.0000032506 cos lot 
-0.0000006991 cos l1t 
-0.0000001503 cos 12t 
-0.0000000323 cos 13t 
-0.0000000070 cos 14t 
-0.0000000015 cos 15t 
-0.0000000003 cos 16t 
-0.0000000001 cos 17t, 

o =.5.1)( 10-7 t Stability: neutral, where y=0.00675 x 5.0. 

Table 7 
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Periodic solutions to (1.5) with a=0,8=0.3,P=2.0: 

X3{t)=0.1113376437+0.0000000002 sin t -0.5514227536 cos t 
-0.6737293984 cos 2t 
-0.0136049668 cos 3t 
-0.0055800896 cos 4t 
-0.0076512213 cos 5t 
-0.0023812868 cos 6t 
-0.0001772325 cos 7t 
-0.0000978644 Cos 8t 
-0.0000496646 cos 9t 
-0.0000107398 cos lot 
-0.0000018420 cos 11 t 
-0.0000008334 cos 12t 
-0.0000002811 cos 13t 
-0.0000000598 cos 14t 
-0.0000000156 cos 15t 
-0.0000000057 cos 16t 
-0.0000000016 cos 17t 
.-0.0000000004 cos 18t 
-0.0000000001 cos 19t , 

6 -8 . &=7. x 10 ,Stability: neutral, where y=O. 00675 x 140.0 • 

X3{t)=0.0341731575+0.0000000007 sin t -0.2492037267 cos t 
-0.6185554553 cos 2t 

-0.0000000001 sin 2t -0.0092870763 cos 3t 
-0.0009740593 cos .4t 
-0.0036653121 cos 5t 
-0.0021631498 cos 6t 
-0.0000845008 cos 7t 
-0.0000226241 cos 8t 
-0.0000241435 cos 9t 
-0.0000084870 cos lot 
-0.0000005801 cos l1t 
-0.0000002062 cos 12t 
-0.0000001294 cos 13t 
-0.0000000348 cos 14t 
-0.0000000037 cos .l.5t 
-0.0000000014 cos 16t 
-0.0000000006 cos 17t 
-0.0000000002 Cos 18t, 

6 =1.2)( 10-7 , Stability: neutral, where 'l-O.0067.5x 180.0. 

Table 8 
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Periodic solutions to (1.6) with a=10- 5 ,B=0.3, 
6 -2 y=O • 00 75 x 10 , P= 2.0 : 

Y 1 (t)= .ry,x1 (t) 

=0.0005363391-0.5948614354 sin t -0.7414373463 
-0.0069298418 +0.0002773728 sin 2t 

-0.0263042508 sin 3t +0.0129549704 
-0.0003350052 sin 4t -0.0000915269 
+0.0002071635 sin 5t +0.0008519793 
-0.0000074282 sin 6t +0.0000141233 
+0.0000261856 sin 7t -0.0000004987 
+0.0000004872 sin 8t +0'.0000004127 
+0.0000001559 sin 9t -0.0000007657 
+0.0000000190 sin 10t~0~0000000144 
-0.0000000212 sin llt-0~0000000095 
-0~0000000b04 sin 12t-0~0000000008 
-0.0000000004 sin l3t+0.0000000006 

Stability: unstable. 

Y3 (t )=IY. x3 (t) 
=0.0024156208-0.1036331599 sin t -0~9449355963 

. +0.0002773708 sin 2t -0~0057425427 
-0.0094390560 sin 3t -0~0277658105 
-0.0000433228 sin 4t ~0.0002723404 
-0.0004562977 sin 5t -0~0007517027 
-0.0000047033 sin 6t -0~0000118494 
-0.0000182337 sin 7t -0~0000190670 
'-0.0000002870 sin 8t -0.0000004228 
-0.0000006579 sin 9t -0~0000004411 
-0.0000000139 sin 10t-0.0000000131 
-0~0000000221 sin llt-0.0000000087 
-0~00ooooo006 sin l2t-0~0000000004 
-0.0000000007 sin lJt-O.OOOOOOOOOl 

Stability: stable. 

Table 9 
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On Numerical Solutions of Stefan Problem I. 

Hideo KAWARADA and Makoto NATORI 

(Received Jan. 19, 1974; Revised Feb. 15, 1974) 

§l. Introduction 

Various works have been published on Stefan-type free 

boundary problems for heat equations.(1)~(4) 

Stefan problem is to seek u=u(x,t) and s=s(t) which 

satisfy the following equations (FBP.I): 

( 1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5a) 

(1.5b) 

u t = uxx ' O<x<s(t), O<t~T , 

. u(O,t) = f(t) > 0 , 0~t2'l' , 

u(s(t),t) = 0 , O~t~T , 

u(x,O) = ~(x) ~ 0 , O<x<b , ~(b)=O , b>O , 

ds(t)/dt = -ux(s(t) ,t), O<t<T, 

s(O) = b , 

where O<T<+oo. The case b=O will be discussed in the 

succeeding paper. 

The assumption required on the Stefan data is as follows: 

Assumption (A): (i) f and ~ are nonnegative and continuous. 

(ii) there exists a positive constant D such that 

(1.6) o < ~(x) < D(b-x) , for 0 < x < b . == == 
Recently, NOgi(5) presented a difference scheme for FBP.I 

with a term of artificial heat flow and proved the unique exist-

ence and the convergence of the solution of his scheme. 

We propose a new difference scheme by the penalty method. 

Application of the penalty method to initial-boundary value 

problems in a noncylindrical domain (i.e., moving boundary 

prQblems) was done earlier by FUjita.(7) 

In order to apply the penalty method to ~tefan problems, 

an integral representation of the free boundary x=s(t) is 

-1-
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indispensable. 

Therefore, let us use the following reformulation(6) 

of Stefan condition (1.5): 

(1.7a) I s (t) 
s(t)2 = F(t) - 2 ~u(~,t)d~ , 

o 
O<t<T , = = 

where 

(1.7b) F(t) = b 2 + 21tf(T)dT + 21b~q,(~)d~ 
o 0 

We shall denote the differential system (1.l)~(1.4) 

and (1.7) by FBP.K. 

From (1.7) we see 

s(t)2 < F(t) , 
= 

since f(t»O (O<t<T) and u(x,t»O (O<x<s(t) ,0<t<T), which -=- iii:: e:: === e::: -= _ _ 

follows from maximum principle. Choosing X such that X>F(t), 
= 

the domain O<x<s(t), O<t<T is included in O=[O,Xjx[O,T]. 

We consider the following equations with the penalty term(?) 

in the region O=[O,X]x[O,T], 

(1.8) 

(1.9) 

(1.10) 

(l.ll) 

(1.12) 

(1.13 ) 

u = u t xx 

u (0, t) = 

u(X,t) = 

u(x,O) = 

X(x,t) = 

s(t)2 = 

- KX(x,t)u in 0 , 

f(t) , O<t<T 
= = 

0 , O<t<T , == = 

t~X) O<x<b 

b<x~X , 

{ 0 , O<x<s (t) , O<t<T , = =:z = = 

1 , s(t)<x<X, O<t<T , 
= = = 

F (t) - 21X~u(~,t)d~ , O<t<T , 
- == 0 

where K is a positive number. The system {l.8}~(1.13} 

- 2 -
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approximates well FBP.E if K is sufficiently large. A 

merit to solve the above-mentioned system in place of FBP.E 

is that the calculation is markedly simplified by the replace-

ment of the boundary condition (1.3) on x=s(t) by the boundary 

condition (1.10) on x=X (which is independent of t). 

Now, ~'le introduce the following difference scheme (FBP .JI!) for 

the system (1.8)~(1.13): 

(1.14) 
u - u m,n m,n-l = 

k 

u - 2u + u m-l,n-l m,n-I m+l,n-l _ KX u I 

h2 m,n m,n 

l<m<M-l , l<n<N 
= === == === 

(1.15) u = f , O~n<N O,n n 

(1.16 ) u = 0 , O<n<N M,n 

f:m 
, l<m~.rb/h] 

(1.17) u = m,O [b/h]+I<m<M , 

{ 0 , l~[s !h], O<n<N - - n = = 
(1.18) Xm,n = 

I , [Sn!h]+l~m.91-l , O<n~N 

2 2h2 
M-l 

(1.19a) s = F - l m u , O<n<N 
n n m,n = = 

m=l 

b 2 
n-l 

2h2 [bih ] 
(1.l9b) F = + 2k I f + m<l>m • n n=O n m=l 

where 

h = mesh size in the x direction, 

k = mesh size in the t direction, 

T = Nk, 

X = Mh, 

u = m,n u(rnh,nk) , 

- 3 -
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sn = s (nk..1 , 

<Pm = <P (mh) 

f = flnk) n 

. 
and raj denotes the greatest integer not" exceeding a. 

The objective of the present paper is to construct an 

approximate solution of FBP.TIIby iteration. 

In the succeeding paper, we will discuss (i) the unique 

existence of the solution of FBP.TII; (ii) the convergence of 

the solution of FBP.DI to the solution of the difference scheme 

for FBP. IT as K -+ 00; (iii) the convergence of the differ-

ence solution of FBP.IT to the solution of the differential 

system FBP. IT as h, k -+ O. 

In §3, we propose our algorithm. In §4, we show a 

numerical example. §2 is devoted to the preparation. 

.,.. 4 -
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§2. Some preliminaries 

Asa preparation we state the following lemmas. 

In FBP.ill, the free boundary s 
n 

is determined by (1.19). 

But if s is previously given and K is sufficiently large, n 
we can consider (1.14)~(1.18) as the system which approximates 

a moving boundary problem. We shall denote the above-mentioned 

system by MBP.I. Let the solution of MBP.I be (K) 
um,n· 

Lemma 1. In MBP.I, suppose that 

and ~ satisfy the assumption (A). 

O<k/h2~1/2 and that f 

Then u(K) satisfies 
m,n 

(2.1 ) 

where 

Proof. 

(2.2) 

where 

C = max{ max f n , 
O<n<N 

= = 
max ~} 

l<m~Lb/h] m 

From (1.14) we have 

u(K) = 
m,n 

__ l--:=-c-{).u (K) + (1-2),) u (K) + Au (K) } 
l+kKX(K) m-1.n-1 m,n~1 m+1,n-1 

m,n 

By the assumption we see that the coefficients in the braces 

of the right hand side of (2.2) are all positive and the sum 

of them equals unity. Making use of the facts 

0 < fn < max f = = n O<n<N 
= = 

and 
0 < ~m < max ~ = = l<~[b/hJ m 

- 5 -
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we easily obtain (2.1). 

Lemma 2. In MBP.I, let s' and S" be given and n n u' m,n 

and u" be the corresponding solutions. Suppose that m,n 

O<s'<s"<X in O<n<N. Then we have =. n= n= 

(2.3) u' < u" m,n = m,n 

Proof. Put. 

X~,n =!10 , 

and 

X;,n =f: : 

l<m<[s~/h], O~n~N , 

[s~/h]+l<m~-l, O<n<N , 

l<m<[s~/h], O~n~N , 

Ls~/h]+l~m~M-l, O<n<N • 

We can prove by induction. First we claim that u' < u" m,l'" m,l • 

In fact, there holds 

since 

U~,l = l+kK~' 1 {AU~_l,O + (1-2A)u~,0 + AU~+l,O} ~ 
m, 

Urn' ,0 = u" (ini tial condi tion) and .m,O X, > X" 
m,l - m,l 

Generally if there holds U' <utI we get m,n-l= m,n-l ' 

u" -u' m,n m,n 
1 = l+kKX" {A(u~_l n-l-u~-l n_l)+(l-2A) (u"m n-l-u~ n-l) 
m,n " " 

1 
- l+kKX' ) m,n 

~{AUm', 1+(l.-2A)u' l+Au' +1 . l} > 0 • . -.,n- m,n- m ,n- -

- 6 -
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§3. Algorithm 

We shall construct the approximating sequences {u(R.)}: m,n )\,=0 

and {s~R.)};=O for FBP.n by the solution of the following 

difference scheme: 

(3.1) 

u(R.) _u(R.) 
m,n m,n-l = 

h 

(R.) 
u -m-1,n-l 

l<~M-l, l~~N, 

(3.2) (R.) 
= f O<n<N u O,n n = = 

(3.3) (R.) 
= 0 O<n<N u , M,n = = 

(R.) { <Pm , l~Lb/hJ 
(3.4) u = m,O 0 [b/hJ+l~M , 

(R.) { 0 l<~[s (.q /hj , O<n<N - - n = .... 
(3.5) Xm,n = 

[s(R.)/hl+l~.91-l, 1 O<n<N n --

{s(R.)}2 - 2h2 
M-l (R.-l) (3.6a) = F l rn um,n , O~n~N , 

n n m=l 

(3.6b) {s (0) }2 = F n n 

The sequences {s(R.)}oo 
n R.=O and {u(R.)}oo 

m,n R.=O 

(3.7) 0 < s (1) < s(3)<···<s(2R.+1)<···<s(2R.)<···<s(2) 
= n == n"" ==n == ==n .... """n 

(3.B) o < u (1) < u(3)<···<u(2R.+1)<···<u(2R.)<···<u(2) - m,n == m,n= == m,n .... .... m,n"" .... m,n 

and (R.) s is monotone increasing in n for any t. 
n 

- 7 -

satisfy 

< - s (0) 
n ' 

< u(O) .... m,n 
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This fact can be proved as follows. 

First we show O<S(l) == n • Put 

{ (1)}2 b 2 + 
n-l 

+ 2h2 [bfh].. 2 M-l 
u (0) G - = 2k I f m - 2h I m 

n Sn 
n=O n m=l m in=l m,n 

Then we have 

GO = b 2 > 0 . = 

and 
M-l 

m(u(O) u (0) ) G - G = 2kf - 2h2 I 
n n-l n-l m=O m,n m,n-l 

M-l 
= 2kf 1 - 2k I m(u(O) -2u(0) +u(O) 

n- m=O m-l,n-l m,n-l m+l,m-l 

which implies that Gn is/monotone increasing in n. 

Therefore Gn>O (O<n<N). Let us set 

By Lemma 1 we have 

from which and Lemma 2 follows u(l) < u{O). 
m,n = m,n Therefore we have 

and 

{s(2)}2 
n 

which implies 

(3.9) 

{s(0)}2 = 
n 

M-l 
-2h2 I m u(l) ~ 0 I 

m=l m,n 

8. -



51 

Using (3.9) a.nd ~eIlUl\a 2( we ha.ve 

Repeating the similar argument as above, we get (3.7) and (3.8). 

If we use (3.7) and (3.8), the monotonicity of s~) (ti2} in 

n is shown similarly as 

If [s (R.) ~ s CR.-I) I becomes sufficiently sma.ll r 
n n 

(S~R.), u~~~'} will be considered an approximate solution of 

FBP.m. 

... 9 -
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§4. Numerical Example. 

We show the result of numerical solution of FBP.n in the 

case b=l. We choose the following functio~s as the boundary 

and initial conditions, 

t , 0<t<2 
=== = 

f (t) 

2~t~2.5=T 

<P(x) = 1 - x , O<x<l == == 

In this case, F(t) is calculated by (1.7b) as 

{ 
!+ 8 • 7T 0<t<2 - s~n4 t , 
3 7T == = 

F(t) = 

!+ 8 2<t<2.5 - , . 
3 7T == == 

Thus we take X equal to 2.5. The coefficient of penalty term 

K is taken to be 220. The mesh sizes hand k are 

k = 1/210, 

The results of calculation are shown in Fig. 1 and 2. After the 

fifth iteration of (3.6), we get 

(4.1) max 
n 

..... 10 ~ 
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