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Notes on the Rate of Convergence of the Rayleigh-Ritz

and Weinstein-Bazley Methods

Tetsuro YAMAMOTO

(Received 19 January, 1974)

1. Introduction

It is of considerably difficult problem to estimate the
rate of convergénce of the Rayleigh-Ritz(RR) and the
Weinstein-Bazley(WB) methods applied to general self-adjoint
operators. For a certaln class of operators, however,it can
be easily estimated by comparing the corresponding matrices.
The purpose of this note is to show this for the finite Hill
operator and give some observations for another operator .

Let A be a self-adjoint operator in a real Hilbert space
having the inner product ( , ) and the norm [ul=/(u,u). We
assume that A 1s bounded below and that its spectrum consists
of isolated eigenvalues Algkzé... each having finite multi-
(0)

plicity. Further we assume that A can be repfesented as A
+A', where A(O) is a self-adjoint operator with known dis-
crete elgenvalues A§o) (Afo)ixzi ...) and known orthonormal
eligenfunctions uio). We denote by Ain)(A{n)gﬁén); ...gAén))
and rin)=t(r§?),...,r§g)) be the eigenvalues and the ortho-
normal eigenvectors of the nxn RR matrix Rn=(Au§0),u§O))

based upon the test functions u{o),...,uéo). Ain)(kin); ce

5Aén)) and W§n)=t(W§§),-.-,w§2)) stand for theveigenvalues



and the orthonormal eigenvectors of the WB matrix W —(A(O)dia)

+([pi,pj]) respectively, where p,= A'T lu§0)(Bazley’s special

\
choice) and [u,v]=(A'u,v) for u,veD(A'), the domain of A . It

is known that, if A(n)éxégi, A§n)<x(n+1)<ki<A(n+l)<A(n) for
each i<n. U(n) X r(n) (0) and uin) Z w(n) (O) give the RR
and WB approximations for the orthonormal eigenfunction uy

corresponding to Ai, respectively.

2. The Matrices Rn and Wn for a Certain Class of Operators
We first state the following theorem.

Theorem 1. Let
i+L
0 0
(1) u{0)= 2 Bygu g ) (1=1,2,...,n)
for some scalar BiJ Then R -W -(e(n)) where ei?)-o if i<n-L

or j<n-L.

Proof. We first note that Bij=(A'u£0),u§0))=BJi and that

the conditions (1) are equivalent to

v (0) L L(0)
Au, ’'= B (1=1,2,...,n)
1 kzi 1Ktk
or
(O)_i+L
Uy -kgi_LBikpk'
i+L i+L
Hence we have Gij“(u(o) (O))' Z LBik(pk,u(o))‘ ) LBik[pk’pj]'

This implies that, for each 1 such that i<n-L, the vector
i-L-1 n=i-L -
(0, 50584 1,90+ 3Byq41,395+++50) (or its transpose) gives the

i-th row (or column) of the nxn matrix (bij)=([pi,pJ])-l In
c(n)

order t =
o determine the other elements b ., We put b _ =B -

(0,T=n-L+1l,...,n). Then, substituting the relation



T+L

k=§-L[p0’pk]Bkt=dor

into
n-L n (n)

kzg_L[po,pk]BkT+ X L+1[po’pk](BkT-€kT )=601’

we now obtailn
n T+L
(2) . Ip,pdei™=-F [p_,p 8 . (0=1,2,...,n).
keneL#l O KT KT plpgy O0TRTRT DT

Clearly the system (2) has the unique solution'egﬁ)(n-L<jsp)

for each t(n-L<t<n), and (2) is equivalent to

(3) ? [ ] (n) TfL L 18, . ( L+l )
P,4sPy 1€ = - P,sP o=n-L+l,...,n).
ken-L+1 ©O K~ kT ken+1 O KKt

This completes the proof. Q.E.D.

3. The Rate of Convergence of the Methods Applied to
the Finite H1ill Equation '

In this section weshallapply Theorem 1 to estimate the rate
of convergence of the RR and WB methods applied to the finite
Hill equation. Let A be defined by

L
Au = -u"+( J 2c,,cos 2kx)u, C,r#0,
Ko 2k > “2L

where the domain of A consists of the functions u such that

u(0)=u(m)=0, u(x+m)=u(x), u' is absolutely continuous and u"e

L2(0,m). We define the operators 2€%) and a' as |
A0y _urequ, a'=a-a(0)

respectively, where o is a constant such that a>Mz | 2|°2k|‘

Then k=l |

A (0)- 4i2-q, wl®= [2 gin 21x (1i>1).
1 1 - =
Therefore the conditions (1) are satisfied with

L
Byy = ody, +_k£1°2k(§i-3,k—61+j,k)‘
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Lemma 1. Let A be the operator defined as above. Then there

(n)l

exists a positive constant ¢ independent on n such that le

e (n-L<i,jzn) for all n.

Proof. We rewrite (3) in the matrix form

(n) -
() (P 1412Pn peg D) CEnpas3neneg)= =(IPp_p41sPpey1)C

(1,3=1,2,...,L),

where

B+1,n-L+1° " Pn+1,n Cor, CoL-2 *** ©2

C = " : .
0 .

O ' . c2L-2
As 1s easily seen, we have

n+L,n Co1, .

T
[pn-L+1’pn_L+J] =-§-I ¢(x)sin 2(n-L+1i)x sin 2(n-L+J)xdx
o

+ 2 [" p(x)cos 2(1-3)x ax =
" ¢$(x)cos =-j)x dx ‘pij

0
and

™
+-l.f ¢(x)cos 2(J-1+L)x dx =q,
m o

[Pper+12Pn+s]
as n+o, where ¢(x)= (a+2 { €} COS 2kx)~'. Further we can show
=1
that, if o is sufficiently large (e. g.,a>M+§T———T), the LxL .
matrix P= (pij) is strictly diagonally dominant, and nonsingular.

Therefore we conclude from (4) that

(n) -1
(En—L+i,n—L+J) + -P 7QC
as n+» , where Q=(qij) (1,3=1,2,...,L). Q.E.D.

From Lemma 1 and the relation W _ w(n) in)win), we have

-4 -



Lemma 2. Let k>1 be fixed and m be any positive integer

such that n-mL + ® 3s n - ©®, Then we have

(n) _ M/E }‘"
({ —————t} )
"k ° { 4(n-mL)?
K (J=n-L+1,n-L+2,...,n),
-Ef] '

(n) _
Wook,j T o( n
where

M =M+ 2(L-1)e.

Therefore, by the same way as in the previous paper[16],
we can apply Wilkinson’s result[15;pp.172-173] to estimate the
rate of convergence of the RR and WB methods. The results are

stated without proofs as follows:

Theorem 2. Under the same assumption as ln Lemma 2, we have

I’V\I/]-'.,- 2m
Aén) _ Aﬁn) - o({—————————} )

4 (n-mL)?2
A(n) _ 5 (n) _ -2
n-k = *n-k = 0(n )
Ar(ln) _ Aén) < L.
A 2&5%
Corollary 1. Aén) - Aén) = o({MX%L} ).
n

Theorem 3. Let (uﬁn),uk)go for fixed k. Then, as n-+»=, we

have

- (n) - u‘ = ({__ﬁ.ﬂ__}m ) (k>1 ~mL+o)
"uk , k" o ¥ (nomD)? >1, n-m



SR
uuéf& - un-k” = 0( n L ) (k20).
[_H
N 2L
Corollary,Z.Hu(n) -u || = of /L ).
k k n?
Theorem U4, Take the vectors win) and rin) so as to satis-
n
fy ) o eénz wig)r£2)>0 for all n. Then, for fixed k,
0, T=n=-L+1 ’

we have, as n+w,

o m
"U]({n) - uk"= O({_M_/i___;} ) (k;]_, n—mL+eo)

4 (n-mL)
) (n) "[%]-l
o2y = uy gl =0Cn ) (k20).
=&
i 2L
Corollary 3. ”Uﬁn) - ukH = o({ M/L } ).
nZ
¥ (n) (n)_(n)
Remark. We can prove that } €or Wig Wit >0 for any
‘o,r=n-L+l T '

n and 1 such that n>L and 1<i<n. Therefore the assumption of

Theorem 4 will be satisfied for sufficiently large n.

4, Observation for the Other Equation

Consider an operator A defined by

Au= -u" + q(x)u, u(x)=u(-x), u(x)eL?(-w, o)

where q(x) is a polynomial of degree 2L such that q(x)>x%-a
for some constant o>0 and q(-x)=q(x). (The case of q(x)=x2%+
ax" (0O<a<l) has been treated by Bazley and Fox[2].) Then

A(O)u= ~u"+(x2%2=-a)u and A'=A-A(0) are suitable decomposition.

We have

-6 -



(0)_
)\i = 111-3— Qa,

x2
w0 1 e 2 H, ,(x) (1>1),
27+ J(21-2)!V7
where
' m_x2d" -x?
Hm(x)=(-1) e’ —e (the m-th Hermite polynomial).
dx

By the reccurence relation 2xH = 2mH _,+H ., or

(5) 2x2u{®=vET=2y(aT=3)u{ 0+ (41-3)u{0)+ AIZI-TIu Y],

we see that the conditions (1) are satisfied. Further we

have

-x2
1 e " Hy, oHyr_»

[paﬁpt]é .
20+T=2 flog-2)/(21=2)/7 ==  q(x)-x2+a

dx

= 0(1)

since

x2
IH_(x)|g e 2 /2™ /i,

On the other hand, the relation (5) shows that 313=o(1L).

Hence, if n is large, we may roughly conclude from (4) that

ei?)= O(nL) (n—L+;;i,J;n). Therefore, even if the methods

are convergent, the rate of convergence in this case may be

rather slow, compared with the case of the finlite Hill oper-

ator. The more precise information will be given

elsewhere.
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On the Superiority of the Trapezoidal Rule for the

Integration of Periodic Analytic Functions

Masatake Mori

(Re¢eived 22 January, 1974)

§1 Introduction

It is well-known that the trapezoidal rule with: an
equal mesh size yields a result with remarkably high accuracy
when applied to the integration of a periodic analytic
function over its period. Frequently this rule is even
called the “best" rule with rather vague definition of the
word "'best'. Several attempts seem to have been_made to
show the 'best' property of the trapezoidal rule (e.g.[1l])
by comparing the results with other various well-known
formulas such as Gauss rules.

In the present paper we will define the best rule for
numerical integration of periodic analytic functions over
its period in terms of the asymptotic decay rate of the
exponent of the characteristic function of the error [3],

and show that the trapezoidal rule is the best under this

definition in the similar way as in the preceding paper [3].

§2 The complex integral representation of the error
Let f(x) be analytic over [a,b] and periodic with period

b-a. We consider the integral of f(x) over its period:

b .
I = f £ (x)dx (2.1)
a
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We write an appfoximate formula for (2.1) as follows:
:?l

Af(a) (2.2)
k=1 k k |

where ay and Ak are the sampling points and the weights,
respectively. The error AIn=I-In of (Z.Zj can be expressed
in the form of a complex integral:

Theorem 1 . Let f(x) be analytic over [a,b] and periodic with

period b-a. Then

b n
J f(x)dx - Z Akf(a
k=1

Al = )
n a k
- 7%? v[; Y(z)£f(z)dz - 7%;-\[; Wn(z)f(z)dz (2.3)
where
-mi ;3 Im z > 0
¥(z) = { (2.4)
wi ; Im z < 0

¥ (z) = Z{Z A + : )y . (2.s)
M= -o00 z-a -m(b a) ak+m(b*a)

The path C of the integral (2,3) consists of two line segments

Cq and C3 parallel to the real axis as shown in Fig.l and is

taken in such a way that there exists no singular point of

'f(zf between the two line segments.

Cq
a+in : —< - b+in
aé ‘b
" a-in" > ' b-in!
Cs3

Fig.1l The path C of the integral (2.3)
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Proof The first term of (2.3) is evident since, if we

deform the path by letting n+0 and n'-+0, then we have

b
7%{ c ¥(z)f(z)dz =\l~ f(x)dx . (2.6)

a

It can be seen that the right hand side of (2.5)
converges uniformly on compact sets not containing any of
the poles and defines a meromorphic function. Since f(z)
and Wn(z) are both periodic, Wn(z)f(z) is also periodic with
period b-a so that we can join the lines C; and Cq with no
change of AIn by two line segments C2 énd C4 parallel to the
imaginary axis and form a rectangular contour C' with
positive orientation. If a sampling point is located at
the end point x=a or x=b, C, and C, are deformed slightly
in such a way that they do not pass through the sampling
point and that they have the same shape (Fig.2). Then

from the residue theorem,

n
. jgc"i’n(z)f(z)dz - ;Zj.'l AE(a) (2.7

and we have (2.3) from (2;6), which completes the proof.

C1
a+in < b+in
. C C
Fig.2 The path C' a} 2 4}b
a-1n'\l > 1 b-in'
Cs3
‘We call
Qn(z) = ¥(z) - Wn(z) (2.8)
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the characteristic function of the error [3]. In case of
the trapezoidal rule with an equal mesh size of h=(b-a)/n,

we have

o - T, _ -2mi )
{ mi - mcotrz T-exp(-Z7iz/R) Im z > 0

$_(z) = (2.9)
! Ti - mcothz = *2mi s I <0
R T-exp(+2niz/h) °* ™ %

with the aid of the partial fraction expansion of cotangent
function. Note that ¢n(z) of the trapezoidal rule has no

zeros on the finite z-plane.

§3 Asymptotic decay rate of the exponent of the characteristic
function and the best formula
When Im z» h in the upper half-plane, ¢n(z) of (2.9)

can be approximated by
|¢n(z)| =~ 2wexp(-2ny/h), y=Im z , (3.1)

and hence the quantity

-5% log|o (x+iy)| = 2L, z=x+iy (3.2)
can be regarded to define the decay rate of the exponent of
Ién(z)l in the upper half-plane. Since.én(?)=5;(z), we
will consider the decay rate only in the upper half-plane.
It would intuitively be clear that Wn(z) of a useful formula
‘must converge to Fwi as Im z+*o with all its derivatives and

that generally a formula having a larger decay rate of the

exponent of the characteristic function results in a smaller
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error when applied to the integration of a certain fixed
function. And hence the decay rate can be considered to
be a criterion to define the best formula. Accordingly
we define the average decay rate of the exponent of |¢n(z)|

at a distance d from the real axis in the upper half-plane by

b+id
1 3
r(d) = - F_—a avid '5-}7 10g|q’n(Z)le » (3'3)

and define the asymptotic decay rate by

r = lim r(d) . (3.4)

d>oo

Now we call a formula having the largest asymptotic
decay rate the best formula.
Theorem 2 The trapezoidal rule with an equal mesh size is
the best formula for the integration of a periodic analytic
function over its period b-a ambng formulas having the same
number of sampling points on [a,b).

Proof Consider an integral

1 ¥n(2)
R T T N € (3.5)

where Wn(z) is defined by (2.5). The path I' is taken to

be a rectanglar contour with positive orientation with.corners

at b+id, a+id, a-id' and b-id' as shown in Fig.3. When a

r

a+id 1 b+id
L
Fig.3 The path T r a r,
of (3.5) 21 4
a-id' Ty b-id'
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sampling point lies on x=a or on x=b, T is modified as in

the proof of Theorem 1. Now n is the number of the sampling
points. Note that n is nothing but the number of poles of
ni+?n(z) located inside I'. Then from the principle of the

argument we have

J=n-n (3.6)

where n, is the number of zeros of ni+Wn(z) inside T. Since
Wﬁ(z)/{wi+wn(z)} is periodic with period b-a, the integrals
along FZ and Ty cancel each other for any value of d and d'.
Since Wn(z) must converge, on the other hand, to the constant
function mi as d'-»w, the integral along I, can be made as

small as one wishes by letting d'-w, Hence we have

b+id
= -ﬁ-‘{ 1og{w1+W (z) }dz (3.7)
a+id

as d'-e, Since log{ni+Yn(z)} is analytic along T';, we can

replace d/dz by partial derivative 3/9x so that

b+id
T%T.J- id 5%[10g|ﬂi+wn(2)|+iarg{ﬂi+Wn(z)}]dz

J =
b+id
= YFT Jﬂ 10g|w1+? (z)|~1~y log|mi+¥_(z)]|}dz
b+1d
= 7FT.J~a+1d 1oglf1§z)ldz
- o Jﬂ F? log|¢ (z)|dz (3.8)

in view of Cauchy-Riemann equation. We know that J is real
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from (3.6) and hence the first term of the right hand side
of (3.8) is zero. Accordingly, by letting d»~, we obtain
an important relation between n-n, and the asymptotic decay

rate 1:

r = B%g(n—nz) < %@2. (3.9)

This shows that the asymptotic decay rate r cannot be larger
than égg And the maximum value %g% is attained by such
-ﬂi—Wn(z) that satisfies nz=0, i.e. that has no zeros in the
finite z-plane, if such -ni-Wn(z) exists. We have, on the
other hand, already seen that —ni-?n(z)‘of the trapezoidal
rule has no zeros in the finite z-plane, and hence the

trapezoidal rule is the best formula, in which r=§¥2=z%.

§4 Discussions
The characteristic function of the error of Simpson's

formula

—
]

B{£(a)+4£(a*h)+2£(a*2h) +4£(a+3h)+- -+ +£(b))

]

Fh{T£(a)+£(arh)+£ (a*2h) ++ * - +1£ (D))

-3(2h) (£ (a) +£ (a+2h) +£ (a+dh)++ - -+3£(b)} , =222 (4.1)
is given by
-ni—4ncot"z+lmcot Tz 3 Imz >0
3 he' 3 2h ’
e_(z) = (4.2)
ri-drcotTzelicot-Tz ; Im z < 0
3 h'3 2h ' ’

which can be approximated as
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l¢s(z)| = %nexp(-nlyl/h) , |Imz|»h . (4.3)

Comparing this with (3.1) we see that the decay rate of the
exponent of (4.3) is half of that of (3.1). We see this
situation also from the point of (3.9). Indeed, if we put
¢S(z)=0 in (4.2) for Im z>0, we find an infinite array of
zeros of ?S(z) in the upper half-plane arranged with

distance of 2h=2(b-a)/n at

z = illog 3 + 2jh , j=0,:1,22,... . (4.4)
This means nz=n/2, and hence the asymptotic decay rate for

Simpson's formula is

R rrui (4.5)

from (3.9).

It should be remarked that there may happen to be a
case where an approximate formula other than the trapezoidal
rule gives better result for certain analytic periodic
functions. In fact Simpson's formula (4.1) would yield an
exact result except the round-off error when applied to a
meromorphic function having simple poles the location of
which coincides with that of zeros (4.4) of ¢S(z). Such
a case, however, is rather exceptional and , since the
asymptotic approximation of Ién(z)l such as (3.1) or (4.3)
becomes more precise as h is made smaller, the trapézoidal
rule would become superior to any other formulas when a

high precision is required so that the number of the sampling

-8 -



9

points is sufficiently large.
Finally we show a numerical example that shows the
superiority of the trapezoidal rule. To the integral

representation of Bessel function

J,(5) = ?IF J;cos(4x-Ssin x) dx (4.6)
we applied the trapezoidal rule, Simpson's formula, Filon's
formula [Z] and Legendre-Gauss rule. The number of the
sampling points of each formula is chosen to be 16. Thg
computed absolute errors are as follows:

Integration formula  Absolute error

Trapezoidal rule 3.7x10” 19

Simpson's formula 2.5x107°

Filon's formula 2.4x10°3

Legendre-Gauss rule 6.1x10" 8
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Numerical Investigation of 1/2-Subharmonic Solutions
to Duffing’s Equation

By
Yoshitane SHINOHARA
(Received Jan. 19, 1974, Revised Feb. 15, 1974)

1, Introduction
The present paper is concerned with 1/2-subharmonic
solutions to Duffing’s equation

; d*x dx 3
(1.,1) 4tz T@-—gg tbx+cx’=e-cos wt,
where b>0, ¢c>0 and e>0,

The mathematical proof for the existence of a 1/2-sub-
harmonic solution to (1.,1) with damping absent, that is, with
a=0, has been given by C,T, Taam €t61, T, Shimizui3land W,S,
Loud (2], But, as far as the author is aware, good approxi-
mations to 1/2-subharmonic solutions are not yet found and
the mathematical proof for the existence of a 1/2-subharmonic
solution is not yet given to Duffing’s equation (1,1) with
damping present, that is, with a$0,

In the present paper, good Galerkin approximatlions to
the subharmonic solutions in question will be given by means
of Galerkin's procedure established by M, Urabe(?7] and of the
author’s program (5} of finding solutions to systems of non-
linear equations, and the mathematical guarantee for the
existence of the corresponding exact subharmonic solutions
will be also given by the use of Urabe’s existence theorem (7],

Replacing wt by t, we rewrite (1,1) as follows:

a*x a d 1
(1.2) it *oar t o

-(bx+cx3)= € _ cos t.
wl

To a 1/2-subharmonic solution to (1,1), corresponds a
solution to (1.,2) of the form
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n_
cos 5=t),

. o+ ey B ,
(1.3) x(t)=c,+ Eﬂ(OZn sin—-t +0, 4
Hence, replacing t by 2t in (1.2) and (1,3), we can

reduce the problem to the one to find a solution of the form

(1.4) x(t)=01+‘gl(02n-sin nt +c, .- cos nt)
to the equation

2 .
(1.5) = g gz +a-g¥ +BXx +Yx3=P~cos 2t,

where

2 2 2 2,2 2 2
a= —=a, B=(—7-)"b, y=(—-)%c, P=(—-)"e,
The equation (1.5) can be rewritten in the following form

2
(1.6) Y +adl igy+y’=p/ycos 2t,

where y=v/yx, The equation (1,5) can be also rewritten in a
standard form as follows: '

2 .
(1.7) g i, +o--%%— +z+e-23=cos VT 4
where
2
t= B x= o _ P 2 _
VB -t=1 , pX=Z, 7§ =0 » e € " v

As for 1/2-subharmonic solutions to (1,5) with damping
present, C, Hayashi (1] suggests some interesting properties
from his phase-plane analysis, but his assertions are made
from rough approximaté solutions of the form '

, £
x(t)—c1+02-sin t +cq: CO8 t - 3~ cos 2t

without giving the proof for the existence of 1/2-subharmonic
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solutions, Hence, his assertions do not seem to be of enough
mathematical confidence,
In the present paper, at first, we compute Galerkin

approximate solutions of the form

x(t):cl+02-sin t +C4 - COS t +c,-sin 2t +05-cos 2t
by the use of the author’s geometric method C41,(5] and then
, starting from these rough approximate solutions, we compute
the approximations to the solutions of the form (1,4) by the
use of Galerkin’s procedure established by M, Urabe (8],

After having found an approximate solution by the above
procedure, it is necessary for the dompletion of the process
to verify the existence of an exact solution near the appro-
ximate solution obtained and to find an error bound for the
approximate solution obtained, Using the method developed by
M, Urabe (7] , we have checked the existence of the exact
subharmonic solutions and we have calculated the error bounds
for the approximate solutions, In Tables 2~8, § shows the
error bound obtained in this way, In Tables 1~9, the stabi-
1lity of the subharmonic solutions are also shown,

The computations in the present paper have been carried
out by the use of TOSBAC 3400 at the Computing Institution of
the Reseach Institute for Mathematical Sciences, Kyoto
University,

The author expresses his hearty gratitude to Professor
M, Urabe for his constant advice and encouragement,

The author also wishes to acknowledge the assistance of Miss,
T, Takahashi, Mr, Y, Kono and Mr, Y, Nakatanl at the Compu-
ting Institution of the Research Institute for Mathematical
Sclences, Kyoto University,
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2, Numerical Computation
In his paper (8], M, Urabe established a Galerkin
procedure to compute numerically the solutions of the form
(1.4) to the equation (1.5) by solving the so-called deter-
mining equation by the Newton method, In the present paper,
we shall use his procedure, According to Urabe’s procedure,
we rewrite equation (1,5) in the first order system

(2.1) (" =7 (-=a/at)
y=X(x,y,t)

where X(x,y,t):-ax-yxB—ay+P~cos 2t,
For (2.1), a Galerkin approximation of order m is of the form

— .
x(t)=°1*'£l,(°2n'31n nt +c, .- cos nt),
(2.2)

F(t)=T (-n.c sin nt +n-c, -cos nt),
L] n

2n+1'

Hence, for (2,2), the determining equation for the Galerkin
approximations of order m can be reduced to the following

equation
1 an
£,(0)=4 | X(E(8),F(t),6] at =0,
1 (™" ~ 2
(2.3) on(C)=f;.S X(Z(t),y(t),t)-sin nt dt +n *Cp =0,
-]
w
£, (¢)=-L | x(Z(t),F(t),t) cos nt dt+nZc, . =0
2n+1 - ’ A 2n+1
(n=1 32y - - - ,m) ’
where C=(c1,cz, -~ - ’°2m’02m+1)°

In order to apply the Newton method to the system (2,3),
1t is necessary to find the starting approximate solutions to

-4
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the determining equations (2,3), For this purpose we con-
sider a Galerkin approximation (2,2) with m=2, that 1is,

(2.4) x(t)=cl+02-sin t +C4- COS t +cy - sin 2t +05-cos 2t .,
Then the determining equations for (2,4) are as follows:

flfcl,02,03,04,05)=5c1+Y(c2+l,5clcg+0,75c§c5+1,5clc§

, +1,5clci+1,501c§+1,5czc3cu-0,750§c5)=0,
f2(c1 1C5+C3,Cy 105)’-‘-‘( B-1 )02-0‘°3+Y(0.75°Z+3‘3§°2

+067502°§+1.5020ﬁ+1.50202-3010205+3010304)=0,

(2.5). f3(01,02,§3,c4,c5)=402+(3-1)03+7(Q,7503+30§é3
+0.75G§03+1.503cﬁ+1;503c§+30102c4+301c3c5)=o,
flb(cl 1C54C3 ’04’(}5'):( B“’)°u‘2°‘°5*7‘°-75°3+3°f°4

+1.5030u+1.50%04+0.75040§+3010203)=O,

f5(c1,cz,cB,cu,c5)=2acu+(8-4)05-P+y(0,?5c2+3ofc5
+1,5c§c5-1,5clc§+1;5c§05+1,5c1c§+o,75oﬁc5)=o,

For a system of the above determining equations with
0=0,1,8 =0,3,Y =0,7, P=2,0
that 1is,
0=0,183, €=103,704, v=3,651,
Wwe have computed the eleven solutions shown in Table 1 in the
bounded region lci|é (1=1,2,3,4,5), by the use of the
fortran program constructed in the previous paper (5],
Now from the form of (1,5), we can easily see that if
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x(t) is a solution to (1.5), then x(t+nr), -xCt+(3n/2)) and
-xCt+(n /2)] are also solutions to (1.5), and that if X(t) is
a Galerkin approximation of 2m-periodic solution to (1,5),
then X(t+r), =X(t+(37r/2)) and -x(t+(7/2)] are also Galerkin
approximations of 2n-periodic solutions to (1,5) with the
same order as X(t).

For the solutions to (2.5) shown in Table 1, we readily
see that the Galerkin approximations'iz(t),'i5(t) and_ié(t)
corresponding to the 2nd, 5th and 6th solutions in Table 1
are equal respectively to ii(t+w), Jii[t+(3n/2)] and J§1Et+
(n/2)) , where X, (t) is the Galerkin approximation correspon-
ding to the first solution in Table 1,

Likewise we readlly see that the Galerkin approximations ih(
t), E&(t) and ié(t) corresponding to the 4th, 7th and 8th
solutions in Table 1 are equal respectively to'i (t+m), —5[
t+(37 /2)] and —x3(t+(w/2)] where x (t) is the Galerkin
approximation corresponding to the 3rd solution in Table 1,

The Galerkin approximations X (t), x (t) and xll(t)
corresponding to the 9th, 10th and 11th solutions in Table 1
will be supposed to be the Galerkin approximations of
harmonic solutions to (1.2),

Starting from the solutions to (2,5) shown in Table 1,
by the use of the techniques described in the paper C8) we
have computed the Galerkin approximations of high order for
subharmonic solutions and harmonic solutions, However, by
the reason mentioned above, we have not carried out the com-
putations starting from the 2nd, 4th, 5th, 6th, 7th and 8th
solutions in Table 1, The results are shown in Tables 2 and
3. In these tables, for each approximate solution is given
an error bound § such that

]

UIR() = X(6) +1%(b) - R(6) V]S 6,

Wwhere ¢«=d/dt and g(t) 1s an exact solution corresponding to

-6~
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the approximate solution x(t).

3. The Effect of Nonlinear Term on the Subharmonic Solutions

In order to consider the subharmonic solutions to weakly
nonlinear equation (1,5), that is, equation (1.,5) with \1y1,
we pursue a behavior of the stable subharmonic solution ié(t)
obtained in the previous section as y—0,

From the last equation of (2.,5) we have

1.5 ch(c5-cl)+1.5Y c§(05+01)=P-2 ucu+(4—6)05- Y05(0.75 G%
+30§+O.750i).

Taking account of the numerical results, we may consider that
the value of 05 is close to -P/3 which does not vanish for
P=2,0, Hence, we have

c 2P-hacu+(8-26)05

3YGs

S
s

+ (1+ )‘cg =

2 2 2
1,5c5+601+1,504

Letting o—0 and y— 0, we see from the results of the numeri-

cal computations that |c1/05|<1 and \cu‘«:l,

Hence, for small values of y and ia) , we may estimate the
/.2 2

amplitude cy +C3 of the principal part of 1/2-subharmonic

solution as follows:

2P+(8-2g8)c. ¥
2 , 2 5
(3.1) g v5 = [ P :

The value of the right side of (3,1)‘tends to infinity as Yy
approaches zero, Hence, the amplitude of the subharmonic
solution increases as the value of y decreases,
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Fig, 2 shows this phenomenon by waveforms of the stable
subharmonic solution'i%(t) for various values of Y ,

These solutions are shown in Tables 4~ 6,

These results show that 1/2-subharmonic solutions to
Duffing’s equation do not exist in a neighborhood of periodic
solutions to the linearized equation, The fact tells us that
the methods of perturbation which seek for solutions in a
neighborhood of solutions to the linearized equation are not
adequate for the computation of 1/2-subharmonic solutions

to Duffing’s equation, This may be the main reason why 1/2-
subharmonic solutions to Duffing's egquation have been never
computed so far,

M. Urabe (9] proves that for sufficiently small values
of e and o0(>0) there exists only the 1/3-subharmonic
solution to (1.,7), except for the solutions z(t) such that
|z(t)—= o or |dz/dtl > « as € —> 0, '
our results illustrate affirmatively his result,

From (3.1) the amplitude /cg +c§ of the principal part
of 1/2-subharmonic solutions tends to infinity with order y'%
as y approaches zero, But the value of /y - c; +cj is
nearly constant as y approaches zero, The fact tells us
that 1t is better to compute 1/2-subharmonic solutions to
(1.6) instead of (1,5) for small values of o and y ,

Taking account of the fact, we have computed the subharmonic
solutions to (1,6) with ¢=0,00001, B=0,3, v=0,0000675 and
P=2,0, The results are shown in Table 9,

Tables 2~ 9 show that in the Fourler series of the
subharmonic solution in question, the t'irst five terms domi-
nate the remaining ones in strongly nonlinear cases, but the
first seven terms dominate the remaining ones in weakly non-
linear cases, The fact tells us that one can know the
qualitative character of 1/2-subharmonic solutions to strong-
Ly nonlinear Duffing’s equation by investigating the
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character of the Galerkin approximations of the form
x(t)=c +c,-sin ¢ tC3-Ccos t +¢)-sin 2t +C-CoS 2t,

but in weakly nonlinear cases one must take the more accurate
Galerkin approximations for the same purpbse,

Remark, The effect of the damping term in the stable
1 /2-subharmonic solution'iB(t) of the form

xj(t)=c1+ ‘£? n-sin nt + ,EPZn+1-cos nt

appears strongly in the terms iqczn-sin nt,

When the damping is absent, we observe in Tables 7 and 8 that

£ﬂ02n-sin nt =0,
but when the damping is present, we observe in Tables 4 and 6
that ' .

) 02n-sinvnt

n=1
is not small and it increases as the value of y decreases,
In this case, however,

¥ec cos nt
n={ 2n+1 °

is effected very l1ittle by the damping term,
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Cy

0,0923726693
0.0923726692

0.1285965000
0.1285964999

: -0,0923726692

-0,0923726693

-0.2752659728
0.2752659730

-0.1825706906
0.1825706907
0.6784945625

-0,6784945626

-0,678494 5626
0.6784945625

-0,7583156503
0,7583156503

-0.2752659730

0,0597774582

0,0597774582

0.0632102469
0,0632102469

0.0597774 582
0.0597774582

0.2752659728

-0,1825706905
0,1825706909

0.0632102469
0,0632102469

0.0319575661
0.8312796602
0,.5462865832

0.7583156505
-0.,7583156502

0,.0000000000
.0,0000000000
0,0000000000

: -0,1285965000
8: -0,1285964999

0,0000000000
0,0000000000
0.,0000000000

0,0000000000
0,0000000000
0,0000000000

10:
11:

. %5
-0,6783580768
: -0,6783580768

: -0,6899371440
-0,68993714k40

: -0,6783580768
¢ -0,6783580768

-0,6899371441
-0.6899371440

-0, 5644062145
2,760755463
-2,272539725

.9

[y
O VvV O~ oown & W o=

[

Table 1

-]l
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Periodic solutions to (1.5) with o=0,1,8=0,3,Y=0,7,P=2,0:

1) 3 (£)=0.0928604913-0,2729725113 sin t =-0,6622053451 cos t
+0.0592095043 sin 2t -0.6775492475 cos 2t
+0.,0081759893 sin 3t -0,0104856750 cos 3t
-0,0081146901 sin 4t -0,0070125277 cos U4t
-0.,0015293305 sin 5t -0,0075428283 cos 5t
+0.0005026926 sin 6t -0.0017641013 cos 6t
-0.0000735301 sin 7t -0,0001068038 cos 7t
-0.0000611871 sin 8t -0,0000950798 cos 8%t
-0,0000011729 sin 9t -0,0000382199 cos 9t
+0.0000008986 sin 10t-0.0000054232 cos 10t
-0,0000010457 sin 11t-0,0000011578 cos 11t
-0.,0000002502 sin 12t-0,0000006431 cos 12t
+0.0000000026 sin 13t-0,0000001539 cos 13t
-0.,0000000098 sin 14t-0,0000000231 cos 14t
-0.0000000066 sin 15t-0.0000000092 cos 15t
-0,0000000009 sin 16t-0,0000000033 cos 16t
-0,0000000001 sin 17t-0,0000000006 cos 17t
-0.0000000001 sin 18t-0,0000000001 cos 18t

7 -0,0000000001 cos 19t,

§=1,4x10"", Stability: unstable,

2) XB(t) =0,1325574730-0.1765810119 sin t -0, 7455563965 cos t
+0.0627505778 sin 2t -0, 6894792968 cos 2t
+0.,0065184359 sin 3t -0, 0122670665 cos 3t
~0.0057077000 sin 4t -0.0096779756 cos Ut
-0,0002877279 sin 5t -0,0085009813 cos 5t
+0,0005555277 sin 6t -0, 0019074934 cos 6t
-0 0000489424 sin 7t -0.0001903122 cos 7t
-0.0000306596 sin 8t -0, 0001267016 cos 8t
+0°.0000061376 sin 9t -0, 0000442724 cos 9t
+0,0000015217 sin 10t-0,0000075120 cos 10t
~0.0000005539 sin 11t-0.0000020591 cos 11t
-0,0000000308 sin 12t-0,0000008552 cos 12t
+0,0000000388 sin 13t-0,0000002050 cos 13t
-0,0000000016 sin 14t-0, 0000000445 cos 14t
-0,0000000021 sin 15t-0, 0000000156 cos 15t
+0,0000000004 sin 16t-0,0000000047 cos 16t
+0,0000000001 sin 17t-0,0000000011 cos 17t

-0.0000000003 cos 18t
-7 , ' -0.0000000001 cos 19t,
6=1,8x10"", Stability: stable, -

Table 2

-12-
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Periodic solutions to (1,2) witha=0,18=0,3y=0,7,P=2,0:

1) x (t)=0,0000000001+0,0319635845

+0,0001659289
+0. 0000004612
+0,0000000011

§ =l 7x10"7, Stability: stable,

2) X (t) 0.0000000002+0,8085998729

6 =9.1x10

-8

, Stability:

+0.,1077254917
+0,006763 5484
+o;0002990601
+0,0000085908
+0,0000000051
-0,0000000194
-0,0000000016
-0,0000000001
stable,

3) x ,{£)=0,0000000001+0, 5305085608

8§ =3 4x10"

-8

-0.,0000000001
+0,0462811064
+0.0019772093
+0,000063 5606
+0,0000016033
+0,0000000281

Table 3

~14-

sin
sin
sin
sin

sin
sin
sin
sin
sin
sin
sin
sin
sin

sin
sin
sin
sin
sin

sin 9

sin

, Stability: unstable,

t

3t
5t
7t

t

3t
5t
7t
9t

-0, 5644528144
-0,0008785586
-0,0000014402
-0,00000000273

+2,6920234635
+0,0940200536
+0,0009948792
-0,0001350083
~0,0000132058

11t-0,0000007 564
13t-0,0000000307
15t-0,0000000007
17¢t,

t

2t
3%
5t
7t
t

-2,2314158468

-0,0527460092

-0,0007726566
+0,0000067958
+0,0000010635

11t+0,0000000506

+0,0000000017

cos
cos
cos
cos

cos
cos
cos

‘coSs

cos
cos
cos
cos

cos

cos
cos
cos
cos
cos
cos

t
3t
5t
7t

t
3t
5t
7t
9t
11t
13%

15t

3t
5t
7t
9t
11¢
13¢,



Periodic solutions to (1.5)

(t) 0.2930123755-1,2590140124

<‘5=5,6x10-6

(t) 0.2961798507-0,1083332858 sin t

+0,0341190409
-0,1130152934
-0,0052523794
-0.,0054219996
-0,0005610178
-0,0002349807
-0,0000342579
-0,0000098891
-0,0000017126
-0,0000004099
-0,0000000771
-0,0000000167
-0,0000000033
-0,0000000007
-0,0000000001

, Stability: stable, where

+0,00711 56489
-0,0093081401
-0.0009722017
-0.,0004426696
-0.,0000999061
-0.0000260509
-0,0000063492
-0.,0000015387
-0,0000003674
-0,0000000869
-0,0000000204
-0,0000000047
-0,0000000011
-0,00000000073
-0,0000000001

witha =0,001,8=0

sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin

sin
sin
sin
sin
sin
sin
sin
sin
sSin
sin
sin
sin
sin
sin
sin

t

2t
3t
Lt
5t
6t
7t

-11,4799570291
-0,6997695126
-0.3336762141
-0.,0329736966
-0,0101881061
-0,0014392693
-0,0003180846
8t -0.,000053 5047
9t -0,0000100401
10t-0,0000018143
11t-0,0000003113
12t-0,0000000569
13t-0,0000000092
14t-0,0000000016
1gt-o,oooooooooz
16t,

-5,1275197942
-0,6962044099
-0,1496922067
-0.0322234685
-0.0070009 504
-0.0015101723
-0,0003249848
8t -0,0000699167
9t -0,0000150223
10t-0,0000032274
11t-0,0000006931
12t-0,0000001488
13t-0,0000000319
14t-0,0000000069
15t-0,0000000015
16t-0,0000000003
-0,0000000001

2t
3t
Lt
5t
6t
7t

.3,P=2,0:

cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos

y=0,00675x1,0,

cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos

5=5.3x10"7, Stability: stable, where y =0,00675 x 5.0,

Table 4
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2t
3t
Lt
5t
6t
7t
8t
9t
10t
11t
12t
13t
14t
15t

t
2t
3t
4t
5t
6t
7t
8t
9t
10t
11t
12t
13t
14t
15t
16t
17¢,
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Periodic solutions to (1.5)
(t) 0.2914436944-0 03785540 54

6=2,2x10"7, Stabllity: stable, where v=0,00675 x

+0,0037432939
-0,0030002747
—0.0004751640
-0,0001337269
-0,0000441812
-0,0000107546
-0,0000028383
-0,0000007390
-0,00000018 54
-0,0000000467
-0,0000000116
-0,0000000029
-0,0000000007
-0,0000000002

25(t)=0.1729240185-0.0013345231

8=7,0x10

-8

+0,0006816817
+0,0000573890
-0.,0000449412
+0,0000049194
+0,0000061983
-0,0000002845
-0,0000000987
+0,0000001164
+0,0000000236
-0,0000000010
- +0,0000000014
+0,0000000008
+0,0000000001

, Stability:

with «=0,001,8=0,3,P=2 0:

sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin

sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin

stable, where

Table 5
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t

-3,5922663954
-0,7002181 244
-0,0995051261
-0,0313425705
-0,0065898220
-0.,0015028645
-0,0003512176
8t -0,0000793848
9t -0,0000181357
10t-0,0000041449
11t-0,0000009443
12t-0,00000021 54
13t-0,0000000491
14t-0,0000000112
15t-0.0000000026
-0.0000000006
-0,0000000001

2t
3t
Lt
5t
6t
7t

t

2t
3t
Lt
5t
6t
7t

-0,8434488108
-0,7085991147
-0,0152417827
-0,0121875975
-0.0094382956
-0,0021498124
-0.0002818746
8t -0.0001522820
9t -0 0000520669
10t-0,0000105388
11t-0.0000028904
12£-0.0000010626
13t-0.0000002833
14t-0 0000000699
-0, 0000000218
-0 0000000066
-0 0000000017
-0.0000000005
-0,0000000001

v=0,00675 x

cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos

2t
3t
Lt
5t
6t
7t
8t
9t
10t
11t
12t
13t
14t
15t
16t
17t

10.0.

cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos

100

t
2t
3t
Lt
5t
6t
7t
8t
9t
10t
11t
12t
13t
14t
15t
16t
17t
18t
19t

.0.
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Periodic solutions to (1.5) witha =0,0018=0,3,P=2,0:

’23(t)=o.111335u509-o,oo1o7uuzoo

§=7,6 x 10_8

'ij(t)=0.0341643187

+0,0005308837
+0,0000737828
-0,0000344817
-0,0000018926
+0,0000064399
+0,0000002092
-0,0000002303
+0,0000000720
+0,0000000385
-0,0000000005
-0,0000000001
+0,0000000008
+0.,0000000002

-0.0014957675
+0,0003984503
+0,0000860099
-0,0000264466
-0.0000170626
+0,0000047346
+0,0000006181
-0,0000003103
-0,0000000801
+0,0000000300
+0,0000000020
-0,0000000021
-0,0000000003
+0,0000000002

sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin

, Stability: stable,

sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin
sin

§ =1,2x 10™7, Stability: stable,

Table

-17-

6

t

2t
3t
Lt

5t
6t
7t

-0,5514182480
-0,6737278095
-0,0136047713
-0.,0055800058
-0,0076511441
-0,0023812607
-0,0001772272
8t -0.,0000978628
9t -0,0000496638
10t-0,0000107395
11t-0,0000018419
12t-0,0000008334
13t-0,0000002810
14%-0,0000000598
-0,00000001 56
-0,0000000057
-0,0000000016
-0,0000000004
-0,0000000001

where y=0,00675 x

-0.2491740565
-0,6185496392
-0,0092860164
-0,0009737959
-0,00366483 54
-0,0021630661
-0,0000844859
8t -0.,0000226179
9t -0,0000241399
10t-0,0000084863
11t-0,0000005800
12t-0,0000002061
13t-0,0000001293
14t-0,0000000348
-0,0000000037
-0,0000000014
-0,0000000006
-0,0000000002

t

2t
3t
Lt

5t
6t
7t

wherey =0,00675 »

cos t
cos 2t
cos- 3t
cos U4t
cos 5t
cos b6t
cos 7t
cos 8t
cos 9t
cos 10t
cos 11t
cos 12t
cos 13t
cos 14t
cos 15t
cos 16t
cos 17t
cos 18t
cos 19¢t,

140,0,

t
2t
3t
Lt
5t
6t
7t
8t
9t
10t
11t
12t
13t
14t
15¢%
16t
17t
18¢,

cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos

180.0,
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| a=0.001
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Periodic solutions to (1.,5) with a=0,8=0,3,P=2,0:

-13(t)=O.3002627613+0,00000003O6 sin ¢t
-0,0000000011 sin 2t
+0,0000000027 sin 3t
+0,0000000001 sin 4t

"~ +0,0000000001 sin 5t

§=5,0x 10'6

35(t)=o,2964666764+o,0000000032 sin t
-0,0000000003 sin 2t
+0,0000000002 sin 3t

39

-11,5505768414 cos t

-0,6923730347
-0,3526089531
-0,0328902369
-0,0116843449
-0,0015252088
-0,0004043236
-0,0000630335
-0,0000144947
-0,0000024908
-0,0000005309
-0,0000000963
-0.,0000000197
-0,0000000037
-0,0000000007
-0,0000000001

, Stability: neutral, where y =0,00675

-5.1288186026
-0.6959386175
-0.1500079715
-0.0322212179
-0,0070228217
-0,0015132373
-0,0003263119
-0,0000702336
-0,0000151121
-0.,0000032506
-0,0000006991
-0,0000001 503
-0,0000000323
-0,0000000070
-0,0000000015
-0,0000000003
-0,0000000001

cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos

2t
3t
Lt
5t
6t
7t
8t
9t
10t
11t
12t
13t
14t
15t
16t,

x1.0.

cos:

cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos

t
2t
3t
Lt
5t
6t
7t

8t

9t
10t
11t
12t
13¢
14t
15t
16t
17t,

§ =5,1 « 10'7, Stability: neutral, where +=0,00675«x 5,0,

Table 7

-19-
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Periodic solutions to (1.5) with ¢=0,8=0,3,P=2,0:

'EB(t)=o_1113376437+o.oooooooooz sin t

1 &=7,6x -10‘8

EB(t)=0.0341731575+0.0000000007 sin t
-0,0000000001 sin 2t

-0.5514227536
-0.6737293984
-0,0136049668
-0,0055800896
-0,0076512213
-0,0023812868
-0,0001772325
-0,0000978644
-0,0000496646
-0,0000107398
-0,0000018420
-0,0000008334
-0,0000002811
-0,0000000598
-0,00000001 56
-0,0000000057
-0,0000000016
-0,0000000004

-0,0000000001
, Stability: neutral, where y=0,00675x 140,0,

-0.2492037267
-0,6185554553
-0,0092870763
-0,0009740593
-0,0036653121
-0,0021631498
-0,0000845008
-0.0000226241
-0,0000241435
-0,0000084870
-0.0000005801
-0,0000002062
-0,0000001294
-0.0000000348
-0.,0000000037
-0,0000000014
-0.0000000006
-0.,0000000002

cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos

cos
cos
cos

cos .

cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos

t
2t
3t
Lt
5t
6t
7t
8t
9t
10t
11t
12t
13t
14¢
15t
16t
17t
18t
19t,

t
2t
3t
Lt
5t
6t
7t
8t
9t
10t
11t
12¢
13¢
14t

15¢

16t
17t
18t,

§ =1,2x 10~7, Stability: neutral, where y=0,00675x 180.0,

Table 8

-20-



Periodic solutions to (1,6) with a=10-5,8=0.3,

_y—'l(t)= /'_Y‘il(t)
=0,0005363391-0, 59486143 54

Ty (t)

=/7-?c‘3(t)

+0,0002773728
-0,0263042508
~0.0003350052
+0,0002071635
-0,0000074282
+0,00002618 56
+0,0000004872
+0,0000001 559
+0,0000000190
~0,0000000212
-0,0000000004
-0,0000000004

=0,00241 5620801036331 599

+0,0002773708
-0,0094390560
-0,0000433228
~-0,0004562977
~0,0000047033
-0,0000182337

-0,0000002870

-0,0000006579
-0,0000000139
-0,0000000221
~-0,0000000006
~0,0000000007

sin t
sin 2t
sin 3t
sin 4t
sin 5t
sin 6t
sin 7t
sin 8t
sin 9t

¥=0,00675 x 10

-0,7414373463
-0,0069298418
+0,0129 549704
-0,000091 5269
+0,0008519793
+0,0000141233
-0,0000004987
+0,0000004127
-0,0000007657

sin 10t-0,0000000144
sin 11t-0,0000000095
sin 12t-0,0000000008
sin 13t+0,0000000006

Stabllity: unstable,

sin t
sin 2t
sin 3t
sin 4t
sin 5t
sin 6t
sin 7t
sin 8t
sin 9t

-0,9449355963
-0,0057425427
-0,0277658105
-0,0002723404
-0,0007517027
-0,0000118494
-0,0000190670
-0,0000004228
-0,0000004411

sin 10t-0,0000000131
sin 11t-0,0000000087
sin 12t-0,0000000004
sin 13t-0,0000000001

Stability: stable,

Table 9

-2]1 -

-2

cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos

cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos

]
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P=2,0:

t

2t
3t
Lt

5t
6t
7t
8t
9t
10t
11t
12t
13¢t,

2t

3t
L4t
5t
6t
7t
8t
9t
10t
11t
12t
13¢,
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On Numerical Solutions of Stefan Problem I.

Hideo KAWARADA and Makoto NATORI

(Received Jan. 19, 1974; Revised Feb. 15, 1974)

§1. Introduction
Various works have been published on Stefan-type free
boundary problems for heat equations.(l)m(u)
Stefan problem is to seek u=u(x,t) and s=s(t) which

satisfy the following equations (FBP.I):

(1.1) ug = u o, 0<x<s(t), 0<t<T ,

(1.2) ‘u(0,t) = f(t) 20 , 0Lt<T ,

(1.3) u(s(t),t) = 0 , 0ZL<T ,

(1.4) u(x,0) = ¢(x) >0 , 0<x<b , ¢(b)=0 , b>0 ,
(1.5a) ds(t)/dt = —ux(s(t),t), 0<t<T ,

(1.5Db) s(0) = b ,

where O0<T<+» ., The case b=0 will be discussed in the

succeeding paper.
The assumption required on the Stefan data is as follows:
Assumption (A): (i) f and ¢ are nonnegative and continuous.

(ii) there exists a positive constant D such that

(1.6) 0 £ ¢(x) £ D(b-x) , for 0 <x<b.

Recently, Nogi(S) presented a difference scheme for FBP.I
with a term of artificial heat flow and proved the unique exist-
ence and the convergence of the solution of his scheme.

We propose a new difference scheme by the penalty method.
Application of the penalty method to initial-boundary value
problems in a noncylindrical domain (i.e., moving boundary
(7)

problems) was done earlier by Fujita.

In order to apply the penalty method to Stefan problems,

an integral representation of the free boundary x=s(t) 1is
-1~



indispensable.

(6)

Therefore, let us use the following reformulation

of Stefan condition (1.5):

2 s(t)
(1.7a) s(t)2 = F(t) - zf Eu(E,t)dE ,  O0<t<T ,
0
where
2 t b
(1.7b) F(t) = b + 2~[ f(t)dtr + 2}’ Edp(E)AE .
0 0

We shall denote the differential system (l1.1)~nv(1.4)
and (1.7) by FBP.L.
From (1.7) we see

s(t)2 L F(t) , 0<t<T ,

since £(t)>0 (0<t<T) and wu(x,t)>0 (0<x<s(t),0<t<T), which
follows from maximum principle. Choosing X such that X>F(t),
the domain O0O<x<s(t), 0<t<T is included in Q=[0,X]x[0,T].

We consider the following equations with the penalty term(7)

. in the region Q=[0,X]x[0,T],

(1.8) u, =u. . - KX (x,t)u in Q ,
(1.9) u(o,t) = £(t) , o<t<T ,
(1.10) u(X,t) = 0,  0<t<T ,
' ¢ (x) , 0<X;b ’
(1.11) u(x,0) = {
0 B b<x<X ,
0 , 0<x<s(t), O0<t<T ,
(1.12) X(x,t) = {
1, s(t)<xgX, O0<t<T ,
2 X
(1.13) s(t)” = F(t) - 2\[ Eu(g,t)dg , 0<t<T ,
0

where K is a positive number. The system (1.8)v(1.13)
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approximates well FBP.I if K is sufficiently large. A
merit to solve the above-mentioned system in place of FBP.I
is that the calculation is markedly simplified by the replace-
ment of the boundary condition (1.3) on x=s(t) by the boundary
condition (lflO) on x=X (which is independent of t).

Now, we introduce the following difference scheme (FBP.I) for

the system (1.8)Vv(1.13):

u - u u - 2u + u

m,n m,n-1 _ "m-1,n-1 m,n-1 m+l,n-1 _

(1L.14) i h2 - me,n um,n
1<m<M-1 , 1<ng<N
(1.15) uO,n = fn ' 0<n<N
(1.16) Uy n = o, 0<n<N
¢ + lmg(b/h]
(1.17) um’0 =
o , [b/h]+1<m<M
0o, 1<m< [Sn/h] r 0<nIN
(1.18) Xmon =
’ 1, [sn/n]+l;m;M-l , 0<niN
2 2 M-1
(1.19a) s = F_ - 2h ] mu ’ 0<n<N
n n et m,n =
m=1
2 n-1 2 [bfh]
(1.19p) F_ = b + 2k ) £+ 2n m¢
n=0 m=1

where

h = mesh size in the x direction,

k = mesh size in the t direction,

T = Nk,

X = Mh,

um n = u (mh,nk),

[4
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s (nk)

0
i

n '
¢’m = ¢ (mh) ,
fn = f£f(nk) ,

and [a] denotes the greatest integef not exceeding a .

The objective of the present paper is to construct an
approximate solution of FBP.II by iteration.

In the succeeding paper, we will discuss (i) the unique
existence of the solution of FBP.II; (ii) the convergence of
the solution of FBP.II to the solution of the difference scheme
for FBP.II as K » «; (iii) the convergence of the differ-
ence solution of FBP.II to the solution of the differential
system FBP.II as h, k + 0.

In 83, we propose our algorithm. In 54, we show a

numerical example. §2 is devoted to the preparation.
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§2. Some preliminaries

As a preparation we state the following lemmas.

In FBP.II, the free boundary s, 1is determined by (1.19).
But if s, is previously given and K 1is sufficiently large,
we can consider (1.14)Vv(1.18) as the system which approximates
a moving boundary problem. We shall denote the above-mentioned
system by MBP.I. Let the solution of MBP.I be u(K)

m,n’

Lemma 1. In MBP.I, suppose that 0<k/h2§l/2 and that £
(K)

and ¢ satisfy the assumption (A). Then L satisfies
(4

(K) _
(2.1) 0 <u < C (1l<m<M-1, 0<n<N),
where C = max{ max fn ' max ¢m} .

0<n<N 1<m< |b/h]
Proof. From (1.14) we have

(K) _ 1 3., (K) - (K) (K)
(2.2) Ym,n = 1+ka(K {Aum-l.n~l +Q 2>‘)um,n-.-l +~Aum+l,n-1} "
m,n
where
A = k/h? .

By the assumption we see that the coefficients in the braces
of the right hand side of (2.2) are all positive and the sum
of them equals unity. Making use of the facts

0 < fn < max fn '
0<n<N

and
0 <2 ¢ < max )
™7 1zm<(b/hy ™

- 5 -
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we easily obtain (2.1).

v " : ]
Lemma 2. In MBP.I, let s and sp be given and um'n

and u& n be the corresponding solutions. Suppose that
’

O;sﬁ;s;;x in 0Zn<N. Then we have
(2.3) u' < up in 0<m<M, 0<n<N.
Proof. Put.

{0 R 1;m;[sﬁ/h], 0<nsN ,

[ ]
ern '
1, [sn/h]+l;m;M—l, 0<nsN ,
and
{0 , 12m<[s"/h], 0<niN ,
X" = n
R {1, Ist/hl+1gmgM-1, 0<n<N .

We can prove by induction. First we claim that u' < u" .
m,1 = m,l

In fact, there holds

u' = ~—-l——-{ku' + (1-2A)u’ + Au'
m,

m,1 = TFRRXT 5 'm-1,0 0 m+1,0) =
r

..._..__].'..___ " - " (] A= ]
TR 7 Um-1,0 * (72N o + Mgy o = up
’
Y ' —— ‘it i1 ' v
since wup o = up o (initial condition) and Xm,1 2 Xm,1 °
Generally if there holds uﬂ,n-léuﬁ,n—l , We get
1
" -ty ! - " P | - L] -1 !
um,n um,n 1+ka$ n{k(um-l,n—l um-l,r1-1)+(l 21) (u m,n-1 um,n—l)
’

" -u’ —_—t 1
+Aup n-1"Y%e1,n-1) Y TR TFRR )
m,n m,n

x{Au'

- L] .
m-l,n—1+(l 2)‘)u'm,n-l‘”‘u m+l,n-1} 20

- 6-
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§3. Algorithm

(L) 4
{um,n}2=0

2 oo
and {sé )}2=0 for FBP.II by the solution of the following

We shall construct the approximating sequences

difference scheme:

() _ (2) (2) - (2) (2)
Yn,n ~ Ym,n-1 _ Ym-1,n-1 2um,n--l + Ym+l,n-1 (L), (2)
(3.1) i = ) - KX u
h m,n m
1im<M-1, 12ngN,
() _
(3.2) g n = £ 0<n<N
£
(3.3) ué'; =0 , 0<n<N
(3.4) u'*) = { N
m, 0 0 , [b/h)+l<m<M
_ (%)
o , 1<m<[s /h}, 0<n<N
(3.5) Xqp = @) L
' i , [sn /h]+1<m<M-1, 0<n<N
M-1
()42 _ o .2 (2-1)
(3.6a) {sn 1} = F - 2h ] m Unn ! 0<n<N ,
m=1
3.60) {59312 =F .
n n
. The sequences {séz)}z=o and {uéfi}:=o satisfy
(3.7) 0 < s (1) < 5(3)<'°°<s(22+1)<'-°<s(2£)<'°'<s(2) < s(o).
= n =%n = ="n = =n = =n ="%n

(l) (3) e e e (22+l) e oo (22') L) (2) (O)
(3.8) 0 < um,n = um,n; ;pm,n = ;pm,n = épm,n = um,n

L . . . .
and sé ) is monotone increasing in n for any &.
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This fact can be proved as follows .

First we show Oésél). Put ‘
n-1 [b/h] M-1
6 = {sM1% =%+ 2k | £+ 2n? f m_ - 2nr% J mul0
-n n n=0 m=1 m=1 M0
Then we have
Gp =b% 20 .
and
M-1
- ac - - 2 (0) _ ..(0)
Gn Gn—l = 2kfn_l 2h L m(um'n um,n—l
m=0
M-1
= - (0) -9y (0) (0) ,
2kfn—1 2k m£0 m(um-l,n-l 2um,n—1+um+l,m—l
m,n m,n
M-1
= - (0) 2 (0)__(0)
= 2k(M-1)uy_; ,_; + 2kh°K m£0 ™ nUmon 2 0

which implies that G, is- monotone increasing in n .
Therefore G >0 (0<ngN). Let us set s(l)=/a;;0.

By Lemma 1 we have

M-1
(1),2 _ (0),2 _ 2 (0) (0),2
{s "'} = {s "'} 2h zl mougn S {s 771,
from which and Lemma 2 follows uélg L uéoi. Therefore we have
’ ’
(6212 _ (g2 2 M 0 )y,
Sn n - Ym,n Yn =
m=1
and
(2),2 (0),2 2 M5t (1)
{s “'1° = {s 7'}*=-2n" | mu-™ <0,
m=1 ’

which implies

s (1) ¢ g2 (o)

(3.9) n = n = "n
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Using (3.9) and Lemma 2, we have

Repeating the similar argument as above, we get (3,.7) and (3,8),

If we use (3.7) and (3,8), the monotonicity of sﬁz)(xgg) in

n is shown similarly as sél).

If Iséz) - sé2-1)| becomes sufficiently small,
(séz), ué%;.) will be considered an approximate solution of
FBP.II,
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§4. Numerical Example.
We show the result of numerical solution of FBP.Il in the
case b=l. We choose the following functions as the boundary

and initial conditions,

cos% t, 0<t<2
£(t) =
0 y  25t<2.5=T
¢$(x) =1-x, 0<x<1l .

In this case, F(t) is calculated by (1.7b) as

4 g§ .. m

3+t ysing t , 0<st<2
F(t) =

4 8

§ + '1? ’ 2é.t=<=2 . 5 )

Thus we take X equal to 2.5. The coefficient of penalty term

K is taken to be 220. The mesh sizes h and k are

h=1/2%,

l/210,-

o
I

The results of calculation are shown in Fig. 1 and 2. After the

fifth iteration of (3.6), we get

(4.1) max |s'3) - g(6)| = 2.4 x 1973,
n n n

- 10 -
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