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On Numerical solutions of ·Stefan Problem II. 

Unique E~istence of Numerical Solution. 

Hideo KAWARADA and Makpto NATORI 

(Received 28 December, 1974) 

§l. Introduction 

r~evioQsly we presented a numerical method for unidimensional 

Stefan problem[l]. In our method, the sys~em of differential and 

integral equations with penalty term is discretized and solved 

by iteration. The accuracy of numerical results is fairly good. 

In this paper, we slightly modify the penalty, function and 

prove the unique existence of the numerical solution. 

§2. Notations and Problem 

2.1 Notations 

Notations used in this, paper are almost the same as those in 

the previous paper[l]. We list up new notations and important ones 

in the following; 

2" T = Nk 
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4" C = max (max f max rpm) , n n m 

5· A = max (C/b I D) b > 0 

6" m = [s /h] n n 

71) Pn = s /h - [sn/h1 I n 

8" £ = m,n 1/(1 + kK Xm,n) I 

9° eu = u m-l , n - 2u + u m,n m,n m+1 , n 

10° Pu = (I + A 0) um,n I m,n 

11" lull n = max lu I • O<m<M m,n 
== = 

2.2 Problem 

Our problem is to seek two functions u and s which m,n n 

satisfy the following difference equations; 

(2.1) u - u m,n m,n-1 1 
OUm,n_1 KX u = 

~ 
- , 

k· m,n m,n 

1 < m < M-1 , 1 < n < N I - - -
(2.2) u = f > 0 I 0 < n < N , 

O,n n = .... -
(2.3) u = 0 0 < n < N , 

M,n .... .... 

(2.4) u m,O = l rpm , 1 < m < [b/h] 0 < rpm < D ( [b/h] +l-m) h I 
0= - .... -

0 , [b/h]+l < m < M I .- -



(2.5) s 
n 

M-l 
2h2 l mu il 

1 m,n m= 

where 

(2 •. 6 ) 

F n 

n-l 2 [b/h] 
= b 2 + 2k l f. + 2h I m~m 

i=O ]. m=l 

0 I 1 < m~ m -1 = n 

1 - Pn 
Xm,n :;:: kK m = mn 1 + Pn 

, 

1 , m +1 < m~M n .. 
2.3 Penalty function Xm,n 

Rewriting (2.l) we get 

(2.7) u = EPU m,n m,n m,n-l 

where 

1 

1 + p,kK' 
(2.8), E = n 

min 1 + kK 

1 
1 + kK 

I 

, 

, 

1 ,:i. m ~ m -1 
n 

m = m n 

m +1 ~m ~ M 
n 

, 

, 0 ~n~N 

o ~ n < N , - , 

, 0 < n ~ N 
"'" 

, , 

, 0 ~ n .:). N , 

0 ~n,s. N 

As shown in (2.8)!'the value of Em,n (i,e., Xm,n) at m=mn 

differs from that in the previous scheme. The reason of this 

modification is as follows. In the previous scheme, only the 

integer part of s Ih was concerned to determine E (i.e., X.m n) , n ' m,n' , ( 

therefore continuity of u m,n to sn was lost. To take back the 

continuity, we consider the fractional part Pn of sn/h. Thcit 

is, we define the amplification factor E at m=m by the linear m,n n 



interpolation 

(2.9) E m ,n n 

From the relation 

1 
E = 
m,n 1 + kKXm,n 

• 

, 

the value of the penalty function Xm,n 

1 - Pn 

at m=m n 
is written as 

Xm n = 1 + P kK n' n 

§3. Algorithm and Result 

Algorithm to solve the equations (2.1)~(2.6) is the same as 

in [1]. That is, we choose the O-th approximation of as 

(3.1) s~O) = IF'; , 0 ~ n ~ N 

We solve the difference equation (2.1) using the penalty function 

x(O) determined by s(O) and we denote the solution by u(O) • m,n n m,n 

Substituting this solution into (2.5) we get the 1st approximation 

of s as 
n 

M-l 
(3.2) s (1) =j F 

n n 
- 2h2 L mu (0) 

m=l m,n 
, O~n~N 

Repeating the similar procedure we calculate 

The object of this paper is to show that 

converge to the unique solution of (2.1)"'(2.6) 

Theorem. Suppose that 

(1) 

u(Jl,) and 
m,n 
u(Jl,) and 

m,n 
as Jl,+co. 



(2) K = 1/k2 

(3) , where C2 = !(A + CAh)h 
b 

then there exists uniquely the solution of (2.l)~(2.6). 

§4. Preiiminaries 

As a preparation for the proof of the Theorem, we state some 

definitions and lemmas. 

Definition 1. Let s = {sO,sl' ••• , sN} 

property (M) if it satisfies the relation 

b < So < s < ••• < s ~ X • = 1 = = N" 

s is said to have 

Definition 2. Let the solution of (2.l)N(2.4) and (2.6) for a 

given s 

by 

'(4.1) 

be u m,n 

4> (s) 
n 

We define 

M-l 
- 2h2 I mu 

. m=l m,n 
, 

From the argument in §2.3, we see that 4> is continuous with 

respect to s. If ·s is the true boundary, then it holds 

be 

s = 4>(s) i. e., s = 4> (s) 
n n 

Lemma 1. (Monotone dependence of u m,n 

O~n':;'N. 

on s) 

Let solution of (2.l)~(2.4) and (2.6) for given S' and s" 

u l 
m,n and u" respectively •.. Suppose m,n 



0 < s' < s" < X , 0 < n < N , 
n= n= = = = 

and 0 < A < 1/2 -

then it holds 

0 < 
, < u" 0 < m < M 0 < n < N = u m,n = m,n = == = = 

Proof! It is proved by the same arg\Unent as in [1] • 

Lemma 2. Suppose s have property (M), then ~ (s) also has 

property (M). 

Proof. By the definition of ~(s) we have 

{~n+l(s)} 

{~ (s)}2 
n 

Therefore we get 

> 2kf = n 

= 2kf 
n 

2 

= 

= Fn+l -

F - 2h2 
n 

M-l 
- 2h2 I 

m=l 

M-l 
- 2h2 I 

m=l 

2h2 
M-l 
I mu 

m=l m,n+l 

M-l 
I mu 

m=l m,n 

m(P - I)u m,n 

mAou m,n 

, 

= 2k(M - l)uM_l,n > 0 (Lemma 1) -
It is obvious·ly seen that 

=/ FO - 2h2 
M-l 

~o(s) I m<jl = b , 
m=l m 



Lemma 3. (The estimation of u for m <m<M) 
m,n n= = 

2 
Suppose a given s have property (M) and K=l/k '. then the 

solution u of (2.l)N(2.4) and (2.6) is estimated as follows; m,n 

(4.2) 

where 

C1 = A + CAh • 

Proof. We introduce a function v which is a solution of m,n 

the same equations for u m,n except that the boundary condition 

(2.3) is replaced by 

(4.3) v = 0 , m +1 < m < M , 0 < n < N • m,n n = = = = 

First we consider the estimation of u m,n fo,r the case 

(4.4) Pu <Ipu - Pv I + Pv m ,n-l = m ,n-l m ,n-l m ~n-l • 
n n n n 

m=m • n 

Let us estimate the first te;m in the ~1ght band side of (4.4). 

From the initial and the boundary condition (2.2) and (2.4), we get 

u = v O,n O,n 

u 0 = v O· ro, ro, 

From (2.7) and (4.3) follO\vs 



O<u ··v < G 
. = m + 1 , n m . + 1 , n -- 1 + kK n n 

By the use of Maximum principle, there holds for any m and n 

( 1 < m < m 
= = n 

, 0 < n < N) = = 

c lu - v I < m,n m,n = 1 + 'kK 

In the above inequality we put m=m n 
and n=n-1 

on both sides. Then we obtain the estimation; 

(4.5) 

and operate P 

Next we estimate the second term in the right hand side of 

(4.4). If we use the difference version of Lemma 1 in [2], there 

holds the following estimation; (see Appendix, I ) 

(4.6) v < Ah • 
'In ,n == 

n 

Considering the fact that s has property (M), we see 

v m +l,n-l = 0 , 
n 

0 < v m n-1 < Ah , 
= n' = 

0 < v m -1 n-1 < 2Ah . 
= == n ' 

Thus it follows 

(4.7) Pv 1 < Ah • m , n- = 
n 

From (4.5) and (4.7) we have 



o < Pu 1 < m ,n- = 
c + Ah < (A + CAh)h = 

n -1 + kK 

where we used the assumption K=1/k2 

Next we deal with u m,n in the domain m +l<m<M, O<n<N. 
n =-- -== 

By the initial and the boundary conditions w~ see 

u = 0 , M,n 

u = 0 • m,O 

The result for the case m=m leads 
n 

By virture of Maximum principle, we g~t the estimation of u m,n 

for any m and n in this domain 

In the above inequality we put n=n-l and operate P on both 

sides, then we obtain 

o < ·Pu < C h 
=, m,n-l =-= 1 (m +1< m < M, 1 < n < N) 

n==- - :=II" 

Q.E.D. 

Lemma 4. Suppose Sl and s" have property (M), then it holds 

(4.9) 

Proof. 

n 
II u I - u" lin < C lis I. - 5" i I = 1. 1 1 1= 

Even if we suppose 51 < s" , we do not lose generality. 
n - n 

From (2.7) we have. 

9 



o 

U I - u" = £ I Pu I ... £ " Pu" m,n m,n m,n m,n-1 m,n m,n-1 

( £ ' - £" ) Pu I + £" P (u I ... u" ) - m,n m,n m,n-1 m,n m,n-1 m,n-1 • 

Therefore it holds 

II u I - u" II < max ( £ II . - £ I .) x max Pu • + II u' - u" II n -1 • 
n =O<m<M m,n m,n m' <m<m" m,n .... 1 

== n-- n 

Note that £" - £1 = 0 for o < m < m' -1 
- - n 

and m,n m,n 

By the definition there holds 

(4.10) (s" - Sl >/h=m" -m ' + p" - p' • n n n, n n n 

We consider the following three cases. 

Case 1. m" = m' n n 

(p" - p' ')kK n n max (£" - £ I > = 
m m,n m,n 1 + kK 

Case 2. m" = ml + 1 
n n 

< 
s" n - s' n 

h 

m" + 1 < m < M • n =- == 

max 
m 

(£ " - £ I ) = max m,n m,n 
(

1 - p'n)kK , 

1 + kK 

p " n kK .) < s" n. - s· n 

1 + kK h 

In fact it is obvious from the relation 

a <; pi < 1 a <; P" < 1 == n ' - n 

Case 3. m" > ml + 2 
n = n 



kK max ( e: " - e:' ) = -~-- < 
m m,n m,n 1 + kK 

s" - s' 
n n 

h 

In fact it is derived from the following relation 

(s" - s' ) /h = (m" - m' ) + (p" - p' ) > 1 n n n n n n • 

Where we used the fact 

m" - m' > 2 n n = 
, pIt - p' >-1 

n n 

From the above result and Lemma 3, we get 

(4.11 ) nul - u"ll < cIs' - s" I + ~u' - u"~ 
N n = 1 n n n-1 

considering the initial condition ~u' - u"lo = 0 

recurrence formula (4.11), we have (4.9). 

and the 

Q.E.D. 
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Lemma 5. Suppose s' and 5" have property (M), then there 

holds 

(4.12) 

where 

c 2 = 

c 3 = 

Proof. By the 

X 
b C1 h , 

x2 
2b 

definition 

n-1 
Lis' i 

i=l 
- s". I ' 

l. 



2 

(4.13) {~ (s,)}2 _ {~ (S,,)}2 
n ,n 

2h2 
M-l 

= L m(u" - u' ) 
mcl m,n m,n 

2h2 
M-l 

2h2 
M-l 

= L m(u" - u '" ) + l m (u'" - u' ) 
m=l m,n m,n mel m,n m,n 

where 

U lit = e: " Pu ' • m,n m,n m,n-l 

The first term in the right hand side of (4.13) is estimated as 

follows; 

2h2 L me:" P(u" - u'm,n-l) ~ X2 ~u" - u' ~n-l m m,n m,n-l 

Next we estimate the second term. Generality is not lost 

even if we assume s' < s". In the case m" > m' +2, we have n.... n n == n 

m(e:" - e:' )Pu' m,n m,n m,n-l 
mil 

n 
L (e:" -

m=m' m, n 
e: ' ) m,n 

= 2XC h 2 (m" 
1 n 

n mil -1 
n 

L 
m=m' +1 

'n 

1 + p" } 
n 

m' + p" - p' ) n n n 

(Lemma 3) 

, 

The same result is obtained in the cases m" =m' and m" =ro' +1 • 
n n n n 

From the estimations mentioned above, we get 

(4.14) {~ (s,)}2 _ {~ (s,,)}2 
n n < 2XC lh Is' n - s " I + X 21 u" - u' I - n n-l ' 



which follows 

(4.15) 

where we used the following relation obtained by Lemma 2, 

~ (s I) + ~ (s " ) ;. 2b 
n n 

, o < n < N - ... 

From (4.15) and Lemma 4, we have (4.12). 

§5. Eroof of the Theorem 

5.1 set) (~>O) defined in §3 has property (M). 

In fact by the definition 

Therefore 

b • 

Since f > 0 , it is seen that n= 

s(O) > s(O) 
n = n-l 

and it is obvious that 

• 

Q.E.D. 

13 



14 

Thus s(O) has property (M). Next from the relation 

and Lemma 2, it is seen that s(~) (~~l) has property (M). 

5.2 It is obvious that s(~) =b 
o 

(R,> 1) 
=s 

by the definition 

in §3. Genarally for n~l, there holds by Lemma 5, 

(5.1) 

If we put 

(5.2) 

then we obtain 

(5.3) 

n-l (~) 
+ Cl C3 · lis. 

. 1 l. 1;:; 

Using the fact that it holds for any n 

(5.4) 

(~':"'.lll ':"'. s. , 
1 

• 

, 

we get the general expression as follows; (see Appendix.:n.) 

(5.5) Q (n)(~) i (x - b) :!~ (C~:3 tCl) C) 
That is, Q (n)(~) is estimated by a polynomial of (n~l) .... th order 

of~. Therefore we have from (5.2) 



(5.6) max I s (~+l) - s (~) I < [max Q (n)(~) ] ;.c~ 
O<n<N n n = O<n<N = = = = 

< o (.e N-l) C~ 
= 2 

By the assumption 0 < C2 < 1, the right hand side of (5.6) 

converges to 0 as ~+oo. That is, s (~) has the limit I" s . 
is evident that ''S has also property (M) • By the relation 

, 

and "the continuity of ~,there holds as ~+oo 

that is, ," s is the Loundary in search. If we denote the 

corresponding solution by I'~ , ~ ,U' ) is the solution 
m,n m,n 

of the difference system (2.l)N(2.6). 

5.3 Uniqueness of Solution 

Suppose (s' , u') and (s", u") be solutions of the 

difference system (2.l)~(2.6). We assume that Sl and sIt 
n n 

are equal for 0 < n < nO-l and differ for the first time at 

By Lemma 1 

(5.7) 

From (2.5) 

and 

We do not lose 

< u" m,nO 

generality even if we assume 

, O<m<M - • 

15 

It 
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j M-l 
s" = Fno - 2h2 I 

no m=l 

Using (5.7) we get 

mu" m,no 

This contradicts the assumption. Therefore it holds 

It is clear that Sl = s" o 0 
By mathematical induction we see 

Sin = s"n for any n (O.:s n ~ N). Obviously the corresponding 

solutions u l and u" ar~ coincident. m,n m,n 
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Appendix I. Proof of (4.6) 

v satisfies the following difference system; m,n 

v = £ Pv m,n m,n m,n-1 , 1 < m < m 
.... - n 

, 1 < n < N 
- => 

, 

v = f 0 < n < N O,n n = = 

v = <Pm 1 < m < [b/hJ , m,O = .... 

v = 0 0 < n < N m +l,n = = n 

Define for each nO ' 0 ~ nO ~ N 

W m,n = A([s /h] + 1 - m)h , 0 
nO 

< m < ... ..... [s /h] + 1 , 
nO 

o < n < n 
= .= 0 .. 

Observe that W satisfies the difference equation m,n 

W m,n = PW m,n-1 1 < m < m - ..... n 
, 1 < n < 

- == 

with the initial and boundary conditions 

W = A ( [s /h] + 1) > A ([ b/hJ + l)h O,n nO ..... 

> Ab > C > f = - = n 

.W = A ( [s /h] + 1 - m)h > A ([b/h] + 1 m,O nO == 

> D ( [b/h] + 1 - m}h > <Pm = -

, 

- m)h 

1'1 



18 

and 

Wm +l,n = A ([s /h] - m )h 
nO n n 

Comparing W with v in 0 m,n m,n 

there holds by Maximum principle, 

(I .1) o < v < W = m,n = m,n 

Note that 0 < e: < m,n "'" 

Put m = [s /h] , n = nO nO 
then we get 

(I. 2) 

for each 

v[s /h],nO < Ah 
nO 

nO ' 0 < n < N = 0 = 

1 

in (I.I) 

> 0 -
< m < mn +l - -

, 

Replace nO by n in (I.2) , we obtain (4.6) • Q.E.D. 



Appendix II. Proof of (5.5) 

As a preparation for the proof of (5.5), we state the 

following formula on binomial coefficients, 

where we define that 

This formula is derived from a well-known recurrence relation : 

We shall prove (5.5) by induction. 

(1st step) When n=l, (5.5) holds evidently. 

(2nd step) Suppose there holds for any i~n~l 

where 

Then it is seen by (5.3) 

19 



o 

Repeating use of the above recurrence relation with respect to ~ 

leads 

< Q (ntO) + (X-b) L L ~~l n~2 (n-l) c p+ l (ip .... l) 
= i=l p=O p+l 4 

~ (X-b) + (X-b) nr2 (n~l)c~+l ( ~\ 
p=O p+l p+U 

= (X-b) r:1H (~:l) + (X~bl :i~ C; c~ C) 
= (X-b) nrl (n-l) c~ (~) • 

p=O P P 

Therefore (II.2) holds for i=n'. Q.E.D. 

Hideo KAWARADA 

Department of Applied Physics, 
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Makoto NATORI 
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Tokyo 



On the Finite Element Approximation 

of Parabolic Equations 

Consistency, Boundedness, and Convergence 

Introduction 

By Teruo USHIJlMA 

(Received 9 January, 19i5) 

An operator theoretical proof of the convergence of 

approximate solutions of the parabolic equation obtained 

by finite element method will be presented in this article. 

For this purpose a variant of Trotter - Kato's approximation 

theory of continuous semi-groups will be summarized in §l. 

In §2 an abstract evolution equation, an abstract form of 

21 

2nd order parabolic differential equations, will be considered. 

In §3 an approximation method corresponding to the lumping 

method will be discussed. Finally a simple model is 

illustrated in §4. 

The method, which will be mentioned here, are also 

applicable to the evolution equation of hyperbolic type. 

This problem has been treated by the author [7], where 

detailed proofs of the abstract theorems also have been 

written. 

For the finite element approximation of time dependent 

problems, there have been many proofs of the convergence 

of approximate solution (for example Fujii [1], Strang -

Fix [5], Kikuchi [3J). There would be, however, some 

reasons to report this note. One of the significant reasons 
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is that the notion of consistency in the finite element 

approximation will be clarified operator-theoretically. In 

fact we will observe that the equivalence theorem of Lax holds 

for the present problem under suitable interpretations. 

Henceforth the L2-convergence is an immediate consequence 

of the convergence for the stationary problem and the 

stability. Perturbation problems are also treated in our 

setting, which is illustrated in §2. 

The author expresses his hearty gratitude to Professors 

H. Fujita, M. Yamaguchi, and H. Fujii for their suggestion 

of importande of this study and valuable discussion during 

the preparation of this work. 

§l. An approximation theory for semi-groups of linear 

operators. 

Let X be a Banach space. The totality of bounded 

linear operators is denoted by L(X). In this article a 

Co-semi-group T(t) e: L(X) (t >0) is simply called a -
continuous semi-group. (As for details of the semi-group 

theory, seeYosida [8], Kato [2], and Krein [4].) An 

L(X)-valued step function T(t) (t >0) is called a discrete -
semi-group with time unit T (T > 0) if there exists an 

operator T( T ) e: L(X) satisfying 

T(t) = T(T)[t/T ] for t >0 

where [ ] denotes the Gaussian brackete The generator of 

a discrete semi-group Tet) is defined by 

A = T -1 (T ( T) - 1). 



A sequence of Banach spaces { Xn : n=l, 2, ... } is said 

to K-converge (or converge in the sense of Kato) to a Banach 

space X (Xn ~ X, in short) if there exist approximating 

opera tors Pn E L (X, Xn) satisfying the following conditions 

(K. 1) and (K. 2): 

lim IIPnxll ::: II x II for any x EX. (K.~~) 

(K. 2) 
n~oo 

Any: I X EX 
n n can be expressed as xn = Pnx(n) with 

some x (n) E X satisfying II x (n) II ~ Nil xn II ,where 

N is independent of n. 

Now we fix a sequence of Banach spaces { Xn} which 

K-converges to a Banach space X. A sequence { xn E Xn } is 

said to K-converge to a point x E X (xn~ x, in short) if 

A~: II xn - Pnx II = 0, and sequences { x", in E Xn } A E A are 

said to K-converge to points x", E X uniformly' in A E A if 

lim !Ix, n - Pnx II = 0 hold uniformly in '" EA. A sequence 
n-+oo 1\ , 

{ An E L (Xn ) } is said to K-converge to an operator A E L (X) 

(An~A, in short) if AnPnx K. Ax for any x E X, and 

sequences { A A' n E L (Xn) } '" E A are said to K - converge to 

operators A", E L (X), if AA, nPnx ~ A", x uniformlY in A E A 

for any x E X. 

Let us fix a continuous semi-group T(t) E L(X). And let 

A be its generator. Suppose that there is either a sequence 

of continuous semi-groups Tn(t) E L(Xn ) or a sequence of 

discrete semi-groups Tn(t) E L(Xn ) with time unit Tn. 

Let An be the generator of semi-group Tn(t). When the 

discrete semi-groups are considered, it is always assumed that 

lim 
n-+oo 

T = 0 n . 

2'3 
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Consider the following three conditions: 

(A) (Consistency). For some complex number ~ , there exist 

(A-An)-l £ LCXn) (n=1, 2, ... ) and C A _A)-l e: L(X) 

satisfying 

C A -An)-l 

CB) (Boundedness) . 

sup 
n, 0 < t < 1 

!!TnCt)!! < 00 

," r:)" 
\." (Convergence). For any T < 00 

K --+, T(t) uniformly in t e: [0, Tl. 

The following result is fundamental in this study. 

Theorem I. (A - B - C Theorem). The conditions (A) and 

(B) hold if and only if the condition (C) holds. 

In case Xn ~ X and Pn ~ I, Theorem 1 is a corollary of 

Trotter - Kato's theory of approximation of semi-groups 

(Cf. Trotter [6], Chapter IX of Kato[l]). The notion of 

K-convergence is suggested in [1]. One can easily obtain 

the proof of Theorem 1 if he modifies Kato's treatment in 

[1] appropriately. 

§2. A convergence proof of the approximate solutions of the 

evolution equation of parabolic type. 

Let X and Y be Hilbert spaces. Let T be a closed 

operator, whose domain DCT) is dense in X, and whose range 

RCT) is contained in Y. It is assumed that it holds for some 

o > 0 



II Tu II ~ 0 II u II for any u E D (T) . 

The set DCT) can be regarded as a Hilbert space Xl with the 

inner product (u, v)l = (Tu, Tv). As for the notational 

convention the space X will be denoted by XO sometimes. 

The operator A = T*T becomes a positive definite selfadjoint 

operator in X, of which square root Al/2 satisfies 

A 1 /2 > <5 , D (A 1 / 2 ) = D (T) an d II A 1 /2 u II = II Tu II . 
Let B be a closed operator in X, whose domain D(B) contains 

D(T). 

(2. l) 

Hence there is a constant 

II Bu II ~ B IIAl/2u II for 

B satisfying that 
1 

u EX. 

(E) 

Consider the following evolution equation: 

d~u + Au + Bu = 0, t > 0, 
{ 

ueO) = U o E X. 

Let us define a bilinear form c(u, v) with the domain 

D(c) = D(T) as follows: 

c(u, v) = -(Tu, Tv) - (Bu, v) for u, vED(c). 

This form is a closed sectorial form {Cf. Chapt. VI of 

Kato [1]). Therefore the operator C = - A - B with domain 

DeC) = D(A) generates an analytic semi-group T(t) which 

satisfies for some real w 

(2. 2) II T ( t ) II ~ e tw for t > O. -
The function uCt) = T(t)uO is said to be the generalized 

solution of (E). 

To treat approximate problems we impose the following 

assumption. 

A~ sump! j,Qn , For any h > 0 there is a closed subspace 
i Xh of X contained in DCT). Let Ph be the orthogonal projection 

onto Xh in the space Xi (i = 0, 1). Then it holds 

25 
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1 im "Phi u - u" Xi = ° 
h ..... O 

i forueX (i=O, 1). 

Considering the set Xh as a Hilbert space having the 
K inner product induced from the space X, we have that Xh--+ X 

° -with approximating operators Ph' Let us define the bounded 

selfadjoint operator Ah £ L(Xh) by the formula: 

(Ahuh , vh)X= (Tuh , Tvh)y for any uh ' vh £ Xh . 

The spectrum of the operator Ah is contained in the closed 

interval [ 0 2 , <lh] where <lh = II Ah II· The operator B is 

° approximated by the operators Bh = PhB. Namely the operator 

Bh is defined by the formula: 

(Bhuh , vh)X = (Buh , vh)X for any uh ' vh £. Xh' 

The estimate (2. 1) implies immediately 

(2. 3) II BhUh II ~ s II Ah 1/ 2 uh II for uh £ Xh 

since II Ah 1/2uh II = :; IITuh II for uh £ Xh · 

Now we consider the following approximate problem: 

d~uh + Ahuh + Bhuh = 0, t > 0, 

uh(O) = uhO £ Xh · 

By the same reason as the estimate (2. 2) holds, the 

continuous semi-group Th(t) satisfies 

for t > o . ...., 

It must be noted that w can be taken independent of h because 

of the inequality (2. 3). Therefore the condition (B) holds 

for { Th(t)} Let us proceed to check the condition (A). 
-1 K -1 First we note that Ah ----+ A , In fact, let uh and u satisfy 

o Ahuh = Phf and Au = f 

for f £ X. Since uh = P~u, we have 

II uh - ullx~ o-l IIT (Uh - u)11 y = -1 o II uh - u II Xl. 



The right hand side converges to o by Assumption, which implies 

-1 K -1 Since II e- tAh II~ 1, we have -tAh K 
Ah A . e ~ ,e 

which in turn implies ( A + A )-1 K ( A + A)-l for any ·h .. 
Next we show 

(2. 4) for A>O. 

In fact, 

II Bh ( A + Ah)-lp~f - P~B( A + A)-If II 

= Ilp~B{( A + A )-l pOf - ( A + A)-If} II h h 

< /3 II T {( A + A )-l pOf - ( A + A)-If} II - h h 

= B II T {A~ 1 (1- A ( A + Ah) -1) p ~ f A- 1 (1- A (A +A)-l)f} 

< /3 II T {A~lp~f - A-If} II -
II -1 -1 0 0 -1 + A/3 T {Ah [( A +Ah) Phf - Ph ( A +A) f]} II 

+ A B II T { Ai/ p ~ ( A + A) - 1 f - A-I ( A + A) - 1 f} II 

-1 -1 0 1 In the first term, set u = A f. Then uh = Ah Phf = Phu. 

Therefore this term converges to zero by Assumption. The 

third term converges to zero by the same reason (set 

u = ( A + A)-If). 

The second term 

= A/3 II Ah- 1/ 2 {( A +A )-l pOf _ pO ( A +A)-l f } 
h h h 

< ~II ( A 
-1 0 0 +A) -If II .,. +Ah) Phf - Ph ( A 

0 
which tends to zero since ( A +A )-1 K 

( A +A)-l. ~ h 
Finally we note that 

(2. 5) lim 
;>. .... 00 

II Bh ( A +Ah) -1 II = 0 uniformly in h. 

In fact, 

II Bh ( A +Ah) -1 II ~ /311 Ah 1/2 ( A +Ah) -1/2 II 

1/2 
< 13 sup lJ < -.-:.B~,,=, 
= lJ~o A~lJ - 2.A l / 2 

II 

-tA , 

A> O. 

II 
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. ,~. 

Notl'G,ing above mentioned two facts (2. 4), (2. 5) and the 

expansion formula of resolvents: 

( A - Ch)-l = 
K 

= l (_l)n( A 
n=O 

we can conclude that for any sufficiently large A , it holds 

( A - Ch)-l K ~ ( A - C)-I. 

Therefore A-B-C Theorem implies the K-convergence of Th(t) 

to T(t). 

Now we proceed to the discrete approximation defined by 

the following explicit scheme: 

uh(t + Th) = (1 - ThAh - ThBh)uh(t) 

(EhTh) i k Th < t < (k+l) Th , k = 0, 1, 2, 

uh(t) = uOh E Xh :0 ~ t < Th. 

Theorem 2. Choose Th--+ ° such that 

(2. 6) sup 
h 

< 2. 

If uQh~ converges to tt, the solution 

to the generalized solution u(t) of 

T 
uh(t) of (Eh h) converges 

(E) in X uniformly 

in t E [0, TJ for any finite T. If B = 0, y = 2 is admissible. 

Proof. It suffices to check the conditions (A) and (B) 

to the discrete semi-groups Th(t) with the time unit Th 

generated by the operators Ch . The condition (A) is already 

asserted as above. Now we show under the condition (2. 6) 

(2. 7) for t > ° 
with a suitable real constant w independent of h. For a while 

we drop the suffix h. 

Ilu(t+T )11 2 

= II (1- TA)u(t)11 2 + T2 "Bu(t)" 2 

- 2T Re(Bu(t), u(t]) + 2 T 2Re(Bu(t), Au(t)) 



< - II (1- TA)u(t) II 2 + '{"2 13 2 11 AI / 2U(t)1I 2 

< -
+ 2TS II Al / 2u(t) II II u(t) II + 2T8y II AI / 2U(t) II II u(t) II 

II (1- TA)u(t) II 2 + T13 2y II u(t) II 2 

+ TS (l+y)( £11 AI / 2u(t) II 2 + £-IIIU(t)1l 2), 

where £ is an arbitrary positive number. Using the spectral 
a 

representation A = J 152 A dEC A), we have 

(2.8) IIuCt + T )11 2 
a. 

< J 02 {(l- TA )2 + £13 (1+ y) 'TA} d(E( A )u(t) ,u(t)) 

+T (S2y + S(I+Y))lIu(t)II 2 • 
£ 

If 13 I- 0, there is an £0 > 0 such that for any £ < .... 
the relation; 0 < TA:;' Y (0 < Y < 2) implies the 

relation; (1- TA )2 + £13 (1+ y ) TA < l. Fix such an ... 
Then the inequality (2. 8) implies 

II u(t+ T ) II 2 ~ (1+2 TW ) II u(t) II 2 

for some w, which implies (2. 7). If 13 = 0, then the 

relation 0 ~ TA ~ 2 implies the relation (1 - 'tA )2 ~ 1. 

-In this case (2. 7) holds with w = O. 

§3. Approximation of lumped mass type. 

E • 

For simplicity, we restrict our attention to the equation 

(E) in §2 with B = O. Assume there are closed subspaces 

Xh (h > 0) satisfying the following conditions. 

(L. 1) There are operators J h e: L(Xh , XJ and Kh E L(Xh , Xh) 

such that KhJh and JhKh are the identities on Xh and Xh , 

respectively. 

(L. 2) There is a constant N independent of h such that 
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(L. 3) For any u £ X 
* 0 

~~o II J h JhPhu - u 110 = 0, 
* where the adjoint operator J h is defined by the 

* (Jhu, v)X = eu, J h v)X for u E Xh and v 

Here we introduce another approximate equation 
d * 

{ dtJh Jhuh(t) + Ahuh(t) = 0, 

uh(O) = uh £,Xh ' 

or equivalently for uh(t) = Jhuh(t), 

* 

E 

where the operator Ah = Kh AhKh is a positive definite 

bounded self-adjoint operator in Xh . 

formula 

Xh' 

In these situations, we have Xh K + X with approximating 
o 

operators Ph = JhPh · 

Fix f £ X arbitrarily. Let u, uh and vh be the solutions 

of Au = f, AhUh = Phf and Ahvn = Phf. We have 

110 
" vh - Phu ,,< II vh - JhPhu.l1 + II JhPhu - JhPhul1 . 

The 2nd term converges to 0 as h tends to 0 by the condition 

(L. 2) and Assumption in §2. As for the 1st term it must 
1 * 0 be noted that Phu = uh ' and that Ahvh = J h JhPhf for vh = Khvh . 

Hence 

Mh = II vh - JhPtu II =" Vh - Jhuh II 

( ON) - 1 II Ah 1 /2 (v h - J h uh) II < 
= 

-1 1/2 = l <5 N) "Ah ( v h - uh ) II 

= (oN)-lll A -1/2(J * J pOf - pOf) II 
h h h h h 

<5 - 2N - 1 ( II J h* J h P ~ f - f II + II f - P~fll ) 



---+ 0 (by (L. 3) and Assumption). 

Therefore Ai/ K .. A-I. Since II e- tAh II ~ 1, A-B-C Theorem 

- tAh K - tA 1 . fl' t 0 asserts that e -+ e local y unl orm y ln ~ . 

As for the discrete approximation, the corresponding 

resul t to Theorem 2 is obtained if we replace a. h with II Ah II . 
The perturbed equation can be also treated. Finally we remark 

that the condition (L. 3) can be replaced with the following 

condition. ( Cf. Kikuchi [3] ). 

(L. 3)' There is a function E(h) tending to 0 as h tends 

to 0 satisfying 

II J h uh - uh II < E (h) II uh II 1 for any uh E Xh . 
0 -

In fact, 

M 2 = (Ah(Vh-uh), vh-uh) h 
o 0 = (Phf-JhPhf, vh-uh) 

o 
+ (JhP hf, vh-Jhvh) 

o 
- (JhP hf, uh-Jhuh) 

= I + .J + K. 

It is noted that II vhll 0' lI uh " 0' II vhll l , II ulhlliare bounded 

by a finite constant C independent of h. Therefore we have 

I I I < 2C II P~ f - JhP~ f " , 

which converges to 0 by the condition (L. 3)' and Banach -

Steinhauss Theorem. Also we have by the condition (L. 3)' 

I J I, I K I ~ N " f II £ (h) C -+ o. 
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§4.. Space 1 dimensional parabolic equation -- an illustration. 

Let us consider the following initial boundary value 

problem. 
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(F) { 

-:tu(t, x) = (;xa(x) ;x + b(x) :x + c(x))u(t, x) 

d 
(ax 

t > 0, 0 < x < 1, 

d aO)u(t, 0) = (ax + al)u(t, 1) = 0 

u(O, x) = u(x), 

:t > 0, 

where a(x) is a positive function belonging to Cl([O, 1]), 

b(x) and c(x) are bounded measurable functions, 

are positive constants. Let us denote the space 
2 by X, and the space L ((O~ 1), a(x)dx) (weighted 

0'0 and ~l 

L 2 ((0, 1)) 

L2 -space) 

by YO' and the space C2 with the inner 
So no 

product (( S ), ( n )) 
1 1 

= a(O) 0'0 So nO + a(l) 0'1 sl n l by Yl . Let Y be the product 

Hilbert space YO x Y1 x X. Consider the following closed 

operator T from X into Y: 

Tu 
d u(O) 

( dx u (x), (u ( 1 ) ), u (x) ) for u e: D (T) = HI (0, 1 ). 

Then we have 

T*w d = - dx (a(x)v(x)) + u(x) for * w e: D (T ) 

where 
-veO)1 0'0 1· 2 

DCT*)= {w=·(v, (I ) ,u): 'v e: H (·0,1). u"e: L (0; :I,)J . 
vel}1 0'1 

Then the operator A = T*T can be regarded as the realization 

in L 2 (0", 1) of the differential operatord - d~ (a (x) d~) + 1 with 

boundary conditions (~x- aO)u(O) = (dx+ a1)u(1) = O. Define 

Bu = -bex) d~U(x)-(C(X)+l)U(X) for ue:D(B)=H1 (0, 1). 

Then the equation (F) is reduced to the equation (E). 

Now let us consider the simplest case -- ~pproximation 

by piece-wise linear functions with equal mesh size. Set 

11 - xl Ixl < 1 , -A ex) = { 
0 Ixl > 1, 

1 Ixl < 1/2, 
rex) = { -

0 Ixl > 1/2. 



For h = l/n en is an integer), put 

and 

A~(X) = A(x-~h), xt(X) = A(X-J h), 

x = { h 
n h h _ n h-h 
\ <l>J" AJ" } , Xh = { \ <l>J" AJ" } • 

j~O j~O 
Then the spaces Xh satisfy Assumption in §2. Let us define 

J h ( I <I>~ A~) = I <I>~ x~ 
j=O J J j=O J J, 

Then the pairs (Xh , Xh , J h , Kh ) satisfy the conditions (L. 1) 

to (L. 3). If a(x) _ 1, we have 

II Ah 1/2 II ~ 2 /j/h + 16 max( 0 0 , ( 1 )/111 + 1. 

II Ah 1 / 2 II ~ 2 / h + 12 max ( 0 0 , a 1 ) / III + 1. 

T 

Therefore if Th/h2 < 1/2, the solution of (Eh h) converge 
T . 

to the solution of (E). (The equation (Eh h) is obtained 
T 

from the equa t ion (Eh h) in §2 after replacement: 

and Bh--+ Bh = PhB.) Incidentally it is remarked 
T 

that the present difference equation (Eh h) is just the 

explicit difference approximation of the equation (F). 
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Numerical Solution of the Stefan Problem 

by the Finite Element Method 

Masatake Mori 

(Received 10 January, 1975) 

1. Introduction 

The equations describing a typical Stefpn-type free 

boundary problem for heat equations in one dimension 

will be stated as follows, The main equation for tempera­

ture u ( t , x) is 

(1.1) o < x < s (t) , o < t < T , 

where set) is the position of the boundary which moves 

because of melting or freezing of the material, for example. 

The initial condition is given 

(1.2) s{O) = a 

(1.3) u (0 , x) = g (x) > 0 , O<x<a. 

At x = set) the boundary condition is given 

(1.4) u(t,s(t» = 0 , 

and the boundary moves according to the following equation 

which is called the Stefan condition. 
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(1.5) ds 
= dt 

au 
- K ax (t,s(t» • 

At x = ° we assume 

(1.6) u(t,O) = f(t) > ° . 
Almost all of the works on numerical solutions of one 

dimensional Stefan problems have been carried out by using 

some difference scheme in a rectangular lattice in x-t space 

in which the mesh size of space variable x and that of the 

time variable t are kept fixed throughout the computation 

[1,2,3,4]. Landau [5] proposed another difference scheme by 

normalizing the domain ° ~ x ~ set) by introducing a new 

variable S = x/s(t) and partitioning the normalized domain 

into equal subintervals. 

In the present paper we propose a new method based on the 

finite element method (FEM) with time dependent basis funct~ons, 

which will turn out to be applicable to a large class of 

problems having moving or free boundaries. 
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2. bpp!ica_tion of the Finite Element Method to the One 

Dimensional Problem --- -~----------

In FEM for initial value problems the partition of the 

domain is usually fixed throughout the computation. In 

contrast to that the domain is partitioned anew at each time 

t in our method in such a way that the position s(t)·· of 

the boundary always coincides with the end point of the 

partition. 

Consider the domain a < x ~ s(t) at time t. We 

divide a < x < set) into n equal subintervals and 

denote each node as 

(2.1) x. = jh , 
J 

j = O,l, ••• ,n; h = h(t) = s(t) 
n 

Then we construct piecewise linear basis functions 

{¢j(t,x)} according to the standard prescription, where 

the suffix 

(2.2) 

j corresponds to x. 
J 

i~ • (t ,x) 
J = { 

-

~ x- (j-l) ; 

~ x+ (·j+l) ; 

(Fig. 1): 

(j-l)h < x< jh 

jh ~ x < (j+l)h ; 

j = 1,2, ••• ,n-I. 



¢. (t,x.) 
J 

Fi S. 1 
t 

a. 

~.(t,x) vanishes outside (j-l)h < x· < (j+l)h. Note that 
J 

t:P j (t,x) depends not only on x but also on t becaus.e 

of h = h (t) • 

Now we apply the Galerkin method based on the basis 

functions {~. (t,x)}. We expand the approximation v(t,x) 
J 

of the solution u(t,x) in terms of ~. (t,x) : 
J 

n-l 
(2. 3) v(t,x) = I b.(t) ~.(t,x) + f(t) ~o(t,x) • 

j=l J J 

Substituting (2.3) into u(t,x) of (1.1), multiplying 

~k(t,x) and integrating over (O,s(t», we have 

(2.4) 
-+ 

r-1 db + N b = 
dt 

-+ -+ 
- K b + f 

where M = M(t) and K = K(t) are mass matrix and 

stiffness matrix, respectively: 

s 

(2.5) Mjk = J ~. ~k dx 
J 

a 

s 
a~j a~k 

J Kjk = --dx ax ax (2.6) 

0 

In addition to those matrices, time dependence of ~. (t,x) 
J 

gives rise to another matrix N = N(t) in (2.4): 



(2. 7) 

where 

(2.8) { act>k 
= at 

s 

Njk = f 
o 

I dh ---x 
h2 dt 

I dh 
2dt x 
h 

; (k-l)h < x < ~h 

14J1 ~ x < (l$+l)h 

a~/at vanishes outside (K-I)h ~ x < (k+l)h, so that the 

sparseness of N is the same as that of M and K. The 

explicit expressions of the non-zero elements of M, K and N 

are obtained as follows: 

(2.9) M, , = ~h (j ~ 1) , MIl = !h M. '+1 = 1 h 
JJ 3 3 JJ_ 6 

(2.10 ) K, , 
2 (j ~ 1) KII 

I 
K, '+1 

1 = h 
, = h 

, = - h JJ JJ_ 

(2 ~ 11) N .. 
I dh (j :j- 1) NIl 

1 dh = '3 dt 
, = 6 dt 

, 
J:J 

Njj _1 
I (3j-l) dh 

Njj+l 
1 (3j+l) dh = 6 

, = - '6 dt . dt 

All the elements other than those mentioned above vanish. 

Note that N is not symmetric. The j-th element of the 

vector f is given by 

(2. 12 ) 
-+ 
f. = 

J 
f(t) 

s s 

J act>O f 
~ ct>j dx + fl (t) ct>o ct>j dx , 

o 0 



/f0 

-+ 
where we assume that f(t) is differentiable. b is the 

tmknown vector, the j-th element of which is b. (t) • 
J 

We obtain various kinds of schemes suitable for 

numerical computation if we approximate the time derivative 
-+ -+-+ 

of b by the time difference {b(t+fit) - b(t1}/fit I i.e. 

(2.13) {M(t + ~ fit) + 8 fit N(t + ~ fit) + 8 fit K(t + ~ fit)}b(t+fit) 

= {M(t + ~ fit)-(1-8)fitN(t + ~ fit)-(1-8}fitK(t+ ~ fit)}b(t) 

- f (t + ~ fit) , o < 8 < I, 

where e = 0 and e = 1 correspond to the forward and backward 

difference approximation, respectively. 

We approximate the Stefan condition by 

(2.14) ds . K 
dt (t) ~ h b n- l (t) 

Higher order approximations for ~~ (t,s(t» will also be 

obtainable if we pick up the values of v at other sampling 

points in the neighborhood of the bou.nda.ry. 

Now we are ready to write down the whole procedure. 

Initially put 

(2.15) b. (0) = g(x.) I 

J J 

and compute s(6t/2) by 
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(2.16 ) s(~t/2) = 

-+ 
Suppose bet) and s{t+~t/2) are obtained. Compute all 

the elements necessary for (2.13) using h(t+~t/2) = s(t+~t/2)/n, 
-+ 

and solve (2.13) ·for b (t+~t) • Then compute s (t+3~t/2) by 

(2.17) set + ~ ~t) = set + ~ ~t) + ~ ~t bn_l{t) • 

We tried to apply our method to an example problem 

which several authors have dealt with [3,4]: 

(2.18) f (t) 
1T 

= cos '4 t , o < t < 2 

(2.19 ) g(x) = 1 - x 

The numQer of partitions and the time mesh size are 

(2.20 ) n = 

(2.21) 1 1 
~t = = 211 2048 

We applied the forward difference scheme (8 = 0) and 

obtained a result which agrees well with those shown 

in [3,4]. 
-+ 

The contribution of N(t) to the solution b with a 

very small meshsize of ~t is fairly small compared with 

that of K(t), so that, roughly speaking, the stability of 
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the present scheme is considered to be guaranteed if the 

scheme without N is a stable one. In fact, we obtained 

2 a reasonable result with A = n ~t = 1/8 < 1/6. On the 

other hand, we observed some instability in the computation 

with A = 1/4 > 1/6 which violates the stability condition 

of the scheme with e = 0 for the usual heat equation 

in a fixed domain [6]. 

3. Discussion 

The present idea is applicable also to the finite 

difference method. In fact, in the one-dimensional case, 

an FEM for our problem will correspond to a certain kind of 

finite difference method similar to that proposed by Landau [5]. 

But the merit of our idea will be more evident when 

applied together with FEM, because FEM is considered to be 

easier to apply to problems in two or three dimensions. 

In a succeeding paper we will show some results of applica-

tions of our method to two-dimensional Stefan problems. 

In the present method it is essential that each node 

be determined uniquely as a function of the position s of 

the boundary, so that in the c"ase of the two- or three-

dimensional problem, it would be necessary for the boundary 

to be assumed to be kept star-shaped. 
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Although we took a partition into equal size subintervals 

in §2, it is not at all necessary to do so. What we need 

to notice is that each node is uniquely determined as a 

function of s. We can choose some suitable partition according 

to the nature of the problem. 

The fact that every matrix element must be computed anew 

at each time step might be seen to be a drawback in the present 

method. But it is not the case because each matrix element 

depends on time as a simple function of t and so the 

computation of the matrix elements at each time step is not 

serious. In fact, in the example show in §2, H{t), K{t) 

and N (t) 

of t. 

are constant matrices multiplied by scalar functions 

Finally the author expresses his thanks to Miss 

Tomoko Takashashi for her help in the numerical calculations. 
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On the Numerical Solvability of Two Point Boundary 

Value Problems in a Finite Chebyshev Series 

for Piecewise Smooth Differential Systems 

Kumiko ITOH 

In his paper [2J, Urabe has proved the existence of a 

good approximation in a finite Chebyshev series to the exact 

solution to the boundary value problem for differential sys­

tems of the form : 

(*) ~~ = X(x,t), 

where x and X(x,t) are vectors of the same dimension. In [2J, 

however, it is assumed that the function X(x,t) is twice con­

tinuously differentiable with respect to x and t in the domain 

of X(x,t). 

In the present paper, the author considers two point 

boundary value problems for the differential system (*) under 

the assumption that X(x,t) is piecewise twice continuously 

differentiable with respect to x and t, that is, it is con­

tinuous with respect to x and t and in addition it is twice 

continuously differentiable with respect to x and t in the in­

terior of each region of the subdivision of the domain. 

The value of t at which the trajectory of a desire~ solu­

tion crosses a boundary curve of a subdomain will be called 

the switching time. In the present paper, similarly to Mohler 

and Moon [lJ, all possible switching times will be treated as 

unknown parameters and a desired solution will be sought on 

each subinterval divided by switching times. The problem is 

thus reduced to a system of boundary value problems with non­

linear boundary conditions. 

If a desired solution is approximated by a finite 



trio 

Chebyshev series on each subinterval divided by switching 

times, then the numerical soluti?n of the problem under con­

sideration is reduced to that of a system of nonlinear alge­

bra~c equations just. as the problem treated by Urabe in [2J. 

In [2J, Urabe has proved that such a system of nonlinear alge­

braic equation has indeed a solution corresponding to an exact 

solution provided the exact solution in question is isolated. 

In the present paper, the author will show that the system of 

nonlinear algebraic equations in question has likewise a solu­

tion corresponding to an exact solution provided the exact 

solution in question is isolated and moreover its trajectory 

transverses the boundary curves of the subdomains, when it 

crosses. 

The result of the present paper shows the numerical 

solvability of two-point boundary value problems in a finite 

Chebyshev series for piecewise smooth differential systems 

and hence the possibility of the numerical computation of solu­

tions in a finite Chebyshev series. 

The author wishes to acknowledge with gratitude the valu­

able advice and guidance she received from Professor; Minoru 

Urabe. 

§ 1. Preliminaries 

Let D be a region of the tx-space (x:n-vector) inter­

cepted by two hyperplanes t = -1 and t = 1, and Dl be a region, 

which includes D in its interior. We assume that D is divided 

into a finite number of· subregions Ell.' A E A, that is, 

D = U Ell.' 
AEA 

-where Ell. is a open connected set and the symbol E denotes the 



closure of the set E. 

In addition, we assume thit each EA has the following 

structure. 

For any boundary point (t l , xl) of EA, we can find real 

valued twice continuously differentiable functions on Dl , . 
fi(x,t), i=l,···,s, such that EA is given by 

(1.1 ) fl(x,t)(O, ... ,fs(x,t)(O, 

in a neighborhood of (t l , xl)' and such that 

(1.2) fi(x l , t l ) = 0, i=l,···,s. 

Let YA(x,t)>> AEA be continuous n-vector functions on D. 

We assume that YA(x,t) is twice continuously differentiable 

with respect to x and t in D, and that 

(1.3) YA (x,t) = YA (x,t), 
1 2 

Let X(x t) be a piecewise smooth function defined by 

(1.4) for (t, x) E E\ . 
In the preseQt paper, we consider the system of differential 

equations 

dx 
dt = X(x,t) 

with the two point boundary condition 

(1.6) 

Here Li , 1=0,1, are given square matrices and t is a given 

vector. 

We consider the solution x(t) such that (i) the number 

of switching times 1s finite, (ii) the curve (t,x(t)) passes 

through the boundary expressed in only one hypersurface. 

Moreover we are conce~ned with the solution, which is 

the following form : 



(1.8) j=l,.·· ,r-l, 

where 

Here t j , j=l,':',r-l ~re switching times, Ej , j=l,·· ',r sub­

regions, and fJ(x,t) = 0, j=l,···,r-l, hypersurfaces. 

In what follows, however, we can include the case that 

t. 1 = t. (2~j~r-l) as a limit case that (t. l-t j ) ~ O. Thus 
J- J J-

we replace above inequalities by 

(1.9) 

Let xj(t) be a restricted function of x(t) on [t j _ l , tjJ, 

for j=l,···,r. Then, from (1.4)~(1.8), we have the boundary 

value problem with nonlinear boundary conditions, 

(1.10) 

Xj(t) = yj(xj(t), t), 

fj(Xj(t j ), tj) = 0, 

j=1,2,"',r, 

j =1, ... ,r-l 

j==l,···,r-l, 

w. he .. re y. j l." s. !l f ti A fi d' (l 4) 0 di g to the ____ . ____ ~ ~1JnG ... _Q:n l,Ae .. ne ln . corresp_TL n ... _. 
subregion E j . 

We put 

t.-t. 1 t j +t j-l 
(1.11) t" (T ) = J J- T + 

,] 2. 2 , 

Xj(T) = Xj(tj(T)), j==l,'" ,r. 

Then~ from (1.10), Xj(T), j=l,"',r, satisfy the following 

boundary value problem: 

(1.12) for Tf.[-l,l] , 

j=1,2,··· ,r, 



j=1,2,··· ,r-l 

(1.13) 

j=1,2,··· ,r-l 

Thus the solutions of the boundary value problem (1.5) and 

(1.6) can be obtained by solving the boundary value problem 

(1.12) and (1.13) with respect to Xj(T), j=l,···,r and 

switching times t j , j=1,2,···,r-l. 

Let f(t) be a continuous vector function defined on 

[-l,lJ and let its Chebyshev series be 
ex> 

(1.14) f (t )..-....a O + 12 L a T (t). 
n=l n n 

We use two kinds of norms II fUn and Of Ilq , which are defined as 
follows 

(1.15) 

U f /I 
n 

= sup If(t)" , 
tE[-l,lJ 

where the symbol U a denotes the Euclidean norm. Let Pmf or 

fm denotes a function discarding the terms of the order higher 

than m in the right hand side of (1.14). Then the following 

properties hold [see Ref. 2J. 

(1.16) 

liP fn m q 

IIf. , 
n 

=~ 
/I P f II ~ J2m + 1 D P f" , m n m q 

1 . 
II f-Pmf IIq = m+l Q fU q 

Now, for (1.12) and (1.13), let 
m 

X:~(T) = ag + J2'L- a~Tn(T)' j=1,2,···,r, (TE.[-l,lJ) 
n=l 



be desired finite Chebyshev series of Xj(T), j=1,2,···,r with 

undetermined coefficients ai, i=O,···,m, j=1,2,···,r. Then 

the determining equation, by which unknown switching times t i , 

i=1,2,···,r-l, and Chebyshev coefficients a~, i=O,l,···,m, 
l 

j=1,2,···,r should be determined, is as follows 
1 

zO(a) = 2:: Lix~ «_l)i+l) - l = 0, 
i=O 

(1.17) 

where 

x j (1) = 0, 
m 

j=1,2,··· ,r-l, 

tj(cos 8»cos(i-l)8 

m 
_1_ ~ v sa j = ° 
e i _l ~ s-(i-l) s ' 

i = 1 , 2, . . . , m , j = 1 , 2 ,. . • ,r , 

j=1,2,··· ,r-l. 

( 1 1 2 2 r r a = col a ... a a ... a·· . a ... at· •• t ) ° mOm ° m 1 r-l' 

{
J2, for s=O {OJ for s < 0, 

j 0=1, j 1 =r, e = v = 
s 1, otherwise, s l_(_l)s, for s~O. 

In what follows, we shall write (1.17) in a vector form 

as follows 

(1.18) F(m) (a) = 0. 

The purpose of this paper is 'to prove the following 

theorem. 

Theorem. We assume the following three conditions : 

(a) The system (1.5) with (1.6) has an isolated solution 
I' 
x(t), that is, the solution such that the matrix G = LO + 

Ll~(1) is nonsingu1ar. Here ~(t) is a fundamental matrix of 

(1.19) dy _ "-
dt - Xx(x(t), t)y 



~1 

such that 

~(-l) = E. 

(b) The curve 
.j /\ /\ 

1\ 
x(t) satisfies the transversality condition, 

Aj = f~(X(tj)' ,... """" .,,/\ 1\ 
tj)X(x(t j ), tj) + f~(X(tj)' tj) + 0, 

j=1,2,··· ,r-l. 

1\ ' That is, at t j , the curve (t, x(t» transverses the hyper-

surface represented by fj(x,t) = o. 
J\ 

(c) The curve x(t) satisfies the internality condition 

( 1 . 20 ) U = {( t , x ) : " x - ~ ( t ) P ~ o,t E [-1, 1 J } CD. 

Then, fo~ sufficiently large rna, there are finite Chebyshev 

series X~(T), j=l,· ··,r, of any order m ~ rna, and approximate 

switching times t i , i=l,··.,r-l, such that 

(1.21) X~(T) ~ ~j(T), uniformly as m ~ 00, and ti ~~1 as 

m ~ 00, for j=l,···,r, i=l,··· ,r-l. 

Here 
1\ r,.. 1\ 1\ 

. A tj-t j _l t.-t. 1 
i J (T) = x( - 2- T + J J-) for TE [-l,lJ, 

2 ' 
j=l,··· ,r. 

The proof of Theorem is based on the following proposi-

tion. 

propos~tion le Consider a real system of algebraic 

equations 

(1.22) 
{ Ya - l = 0, 

F(a) = 0, 

where a is an-vector, Y is a constant kxn-matrix and F(a) 

is a twice continuously differentiable (n-k)-vector function 

defined in some regionfl of a-space. Assume that (1.22) has 

an approximate solution a = ~for which the determinant of 

J(a) = (~(~») does not vanish. Further assume that there 
a 



are a posi tive constant 0 and a non-negative K < 1 such that 

(i) no {a "- ~ o}e n, = : la-aU 

(ii) U F (a) - F (Ci)1I ~ K for any aE no' a a Ml 
, 

(iii) 
Ml r+M 2£ 

.e. 
15 l-K , 

where r, £, Ml and M2 are numbers such that 

(1.23) 

u (~ a (Ci )) -1 ( ~ g) H ~ M 2 ' 

where (g ~) and (~ g) are square, E is a unit (n-k)K (n-k)­

matrix in the former and a unit kXk-matrix in the latter, and 

O's are appropriate zero matrices. 

Then the system of algebraic equations has the unique so-
~ A 

lution a = a in no' and for a = a, it holds that 

" (1.24) det J(a) ; 0, 

(1.25) 

Proposition 1 is the same with Proposition 1 in Ref. 2, 

except we separate the linear part and the nonlinear part in 

the system of algebraic equations. We omit the proof, since 

it is similar to the proof of Theorem in Ref. 3. 

§ 2. Isolatedness, Internality condition and Truncated 

Polynomial of the Isolated solution. 

In the present and succeeding sections, we assume the 
- . "-

system (1.5) with (1.6) has an isolated solution x(t) with 

switching times ~., i=1,2,···,r-l, of the form (1.7) with 
1 

(1.9), satisfying both the internality condition for some posi-

tive 15 and the transversality condition. 

By the following Proposition 2,- the isolatedness of x(t) 

are given. 



Proposition 2. Let ~j(l) be a fundamental 

(2.1 ) 
d j j t.-t j 1 * = Yx(x (1), t j (l» J 2 - ) Y 

satisfying 

~j(-l) = E, for j=l,'" ,r. 

Then ~(t) of (1.19) is expressed as 
r2t-(t.+t· l ») 

(2.2) ~(t) = ~j\ t _~ J- '2 '-1 (1)·· '~l (1) 
j j -1 J 

matrix of 

on [t j _ l , tjJ, j=l,···,r, 

and further 

(2.3) 

If t j _ l = t j , we put, in (2.2), 

( 2t-(t j +t·_l ) ) 
~. - J = E 

J t.-t· l 
for t E [t. l' t. J . J- J J J-

Proof. Proof ~s derived easily by mathematical induction. 

Now from both the absolutely continuity of ~(t) and the 
A 

compactness of the interval .[-l,lJ, it holds that x(t) is uni-

formly continuous. That is, for any £ E (0,0), there exists 

some positive constant 002 such that 

(2.4) 1\ 1\ , 
Ix(t)-x(t+A)U n = £, for any A E [-002' 002J, 

(t, t+AE [-l,lJ). 

We take some £ E (0, 0) and put 

(2.5) 

Then we have the following proposition. 

Proposition 3. For any functions Xj (l), j=l,···,r 

and parameters t j , j=l,···,r-l, such that 

( 6 ) j () I\j (L I" [ J 2. Ux 1 - x l)U = 001' for T~ -1,1 , 



(2.7) 

the points (t.(T), Xj(T)), j=l, ... ,r, lie in U for TE[-l,l]. 
J 

Proof. The result follows immediately from 

/\ I T+l 1\ I-T 1\ I .t:.. ItJ;(T) - t.(T) = 1-2-(t.-t j ) + -2-(t·_1-t·_l ) = 002' J .1 J. ,1 

where 'fj(T) is the linear transformation obtained from (1.11) 

replacing t. and tj 1 by t. and~. 1. 
J - J J-

By Proposition 3, the system (1.12) can be defined for 

any Xj(T), j=l,···,r, and t j , j=1,2,.·.,r-l, satisfying (2.6) 

and (2.7). 
Since yj(x,t), j;;;l, ... ,r, and fj(x,t), j=1,2,· .• ,r-l, are 

twice continuously differentiable with respect to x and t in 

the domain D, there exist following constants Kl~K14 such 
that 

max II yj (x, t) n 1: Kl , max II yi (x, t)l ~ K2 , 
(x,t)€U (x,t)EU 
j=l,···,r j=l,···,r 

maXl 8yj(x,t)U L K~, max ,y~(x,t)q , K3 , 
( x , t ) € U x (x , t )E. U 

j=l,···,r 

II yix (x, t) II L K4 , lI yit(x,t)ft 
L K5 , max max = 

(x,t)EU (x, t )EU 
j=l, ... ,r j=l,···,r 

max3 n y~ t (x, t) II L K6 , max I fj (x, t) • f: K7 , 
(x, t)E: U (x, t )EU 
j=l,···,r j=l,···,r 

(2. S) 
I fi (x, t) II .t- 1'1 fj ( x , t ) n ~ K9, max KS' max 

(x, t )EU (x,t)E:U xx 

j=l,···,r j=l,· ··,r 

I f~ t (x, t ) II L. 
KIa' 

j f. max max 'ftt(x,t)n -Kll · 
(x,t)E:U (x, t)E U 
j=l,···,r j=l,···,r 

d . 1\ L . max U _yJ (X(T) tj(T))/l n = K12 , 
j=l, ... ,r dT x ' 



d j 1\ 1\ L l ~ax UdiYt (X(T), tj(T»lI n K13 , 
J=l,···,r 

max /I d dyj (i ( T ) , 
/\ L t.(T»1I K14 . 

. 1 T J n J = ,···,r 

Now we shall provide the properties of the truncated 
1\. ",. 

polynomials XJ(T), j=l,···,r, of XJ(T), j=1,2,···,r, satisfy­
m 

ing (1.12) and (1~13) without proof [see Ref. 2]. 

(2.9) 

Here 

1\ • I\j . () 
IIxJ (T) Xm(T)l\n '- Ki7m(m~1) , 

a(m) 

Kj 1 
17(m+l)m(m-l)' 

Kj [m+2 + a(m+l)] 
17 m(m-l) m+l ' 

~ Kj [Jffi+L . + (m+23(m+l)] 
17 [2m(m-l) 

= max 
(t,x)EU 
tE[tj_1,t j ] 

. j 2 a yj (x, t ) j 
Yi(x,t) + [Yx(x,t) + 2' ~t ]Y (x,t). 

+ yj ( t)ayj (x,t) + a 2yj (x,t) I 
x x, at at 2 ' 

where Y~ and x k are respectively a k-th component of yj and x. 

From the first of (2.9), by Proposition 3, there exists a 

PO~itivel\integer mO such that, for any m ~ mO' the point 

(2~(T), tj (T» lies in U for T f [-l,lJ and j=l,'" ,r, and 

( • 1\. 1\ • ". J:\ '- j j a (m) 
UyJ(X~(T), tj(T» - yJ(XJ(T), ~j(T»Hn = K2K17m (m-l)' 



(2.10) 

j=l, ... ,r, 

K Kj a (m) 
917m(m-1) , 

j Aj A j(Aj A L j a(m) 
Bf t (Xm(l), tj)-ft x (1), tj)n = KIOK17m(m-l) , 

j=l,··· ,r-l. 

§ 3. Jacobian Matrix'of F(m)(a) 

Let Jm(a) be the Jacobian matrix of F(m)(a). Then we 

have 

dF (a+Eh) I J (a)h = _, __ m~ __ __ 
m dE E=O , 

where h is a (m+l)rn + (r-l)-vector such that 

1 1 r rn n ( 3 . 1 ) h = col ( h O' . . hm . . . h 0 . . . hm (1 . . . r r -1 ) . 

Further let 61 and 62 ~e respectively rn-vector and mrn+r-l 

vector such that 

(3.2) 61 = col(a b l · .. b~_l) , 

(3.3) ( 1 1 2 2 r r 
62 = col tl···~m~l···~m···~l···~~cl" 'cr _ l ), 

1" where a, b j , ~i and c~ is, respectively the same dimension with 

zO, zj, z~ and f' for each j, k, i, t (j=l,'" ,r-l, k=l,'" ,r, 
1 

i=l,···,m, i=l, .•. ,r). Now we shall consider the linear 

system 

(3.4) Jm(a)h = (:~l . 
If we put 

{ x~ (T) 
a j 

m 
a~Tn Cr), = + J2 L 0 

(3.5) n=l 

h j 
m 

yJ(T) = + J2L. ~nTn (T), 0 n=l 



j=l,···,r, 

then, from (1.17) .and (3.1), corresponding to (3.4), we have 

(3.7) t= L. Y j i « -1) i + 1 ) = a (j 0= 1, j l=r) , 
i=O 1 

(3.8) 

(3.10) 

yj+le-l) - yj(l) = bj , j=l,"',r-l, 

dyj = P {yj (x j (-r) t (-r» yj e'"[ ) } t j -t j -1 
d'"[ m-l x m ' j 2 

j , tj-t j _l 
+ Pm_lYteX~e'"[), tje,"[»jrje'"[) 2 

+ Pm- l yj ex~('"[), tj e'"[) )7'j-:j-l - 'fj ('"[), j=l,··· ,r, 

f~eX~(l), tj)yjel) + f~(X~el), tj)1j - c j = 0, 

j=l,··· ,r-l. 

where (,('"[) is the linear transformation obtained from (1.11) 
J 

replacing tj and t j _l by 7j and 7~_1' and 

(3.11) ~O = ~r = O. 

Let ~~e'"[) be a function such that 
1\ ' I\j 1\ ' m A' 
xJ('"[) = P x ('"[) = aJ + J2 L aJnTn('"[)' 

m m 0 n=l 

1\' 
and we substitute xJ (,"[), j=l,···,r, , m 
spectively for xJ('"[) J'=l ... rand m ' , , 

/\ 
and t j , j=l,···,r-l re-
t j , j=l,···,r-l into (3.7) 

r-(3.10). Then from (3.4), we have 

(3.12) Jm(~)h =(:~l 

We shall prove the existence of the inverse of J m. We 
put 

" " = yj(x ~ ( »)tj-t j _l '"[+1 + lyj( 1 ( » 
t ' j '"[ 2 2 "2 x, j '"[ , 

j=1,2,··· ,r-l, 



gr (x, T) = 0, 

j=2,··· ,r. 

q1 (x, T) = 0, 
;;0. l:-
t j -t j 1 . 1\' /\ j 

R (T) = - [P {yJ (xJ (T) tj (T))Y (T)} mj 2 m-l x m ' 

- y~(~j(T), ~j(T)yj(T)J, j=l,·· ·,r, 

Smj = f~(~~(l), ~j)yj(l) + f~(~~(l), ~j)1j 

- f~(~j(~), ~j)yj(l) - f~(~j(l), ~j)~j' 

j=l,··· ,r. 

Then (3.9) and (3.10) are replaced by 
1\ /\ 

d j . 1\' A • t . -t. 1 1\ • 
(3.14) ~ = yJ(XJ(T) t (T))yJ(T) J J- + Pmgj(XmJ(T),T)7j 

dT x ' j 2 
1\ • • 

+ P 1q ·(xJ (T),T)'T. 1 -lfJ(T) + Rm·(T), 
m- J m J - J 

j I\j A j j I\j A 
(3.15) f x (x (1), t j ) Y (1) + f t (x (1), t j )'lj -c j +Smj = o. 

The solutions yj(T), j=l,. ··,r of (3.14) and (3.8) can be 

obtained by the following propositions. 

Proposition 4. For gj and qj of (3.13), and ~j/(T) 

defined in Proposition 2, we have 

;;; ( 5T -1 Aj . II -:t: j T) -1~ j ( s ) Pm -1 g j (xm ( s ) , s ) d S 

-yj(~j(T), ~j(T))T;ll1 q = O(m-1 ), j=1,··.,r-1 

(3.16) 
II ~ (T ) J ~ l~ j 1 ( s ) Pm -1 q j ('i~ ( s )'; s ) d s - yj ('i j ( T ) , 't j ( T ) ) 12 T 

-Po (T)yj (~j (-1) ,tj l)U = O(m-1 ), j=2,··· ,r. 
J - q 



. j I\j A ()T+l i(Ai( 1:\ l-T Proof. Slnce Y (x (T), tj T) --2- and.Y x T), ti(T»)--2- is 

respectively the solution of the system of differential equa-

tions 
't -~ 

~ = yj(~j(T) ~j(T»Y j 2j - l + (Aj() ) dt x' gj X T,T , 
for j=l,···,r-l, 

and I' ,1\ 

~ i I\i A ti -t i _ l "i 
dt = Yx(x· (T), ti(T»Y 2 + ~i(x (T),T), 

for i=2,"',r, 

(3.16) is proved directly. 

Proposition 5. For Rmj(T) and Smj in (3.13), it holds 
that 

(3.17) URmj (T)lI q ~ O(m-l)(IIY~(T)IIq + 11711 + Ilf jU q ), 

(3.18) 
.1 • 

USmjll ~ Oem-a )(IIY~(T)lIq + 117.), 

where 

'7 = (71 ", 7r _ 1 ) . 

Proof. (3.17) is proved in the same way as the proof with 

respect to Rm(T? of Ref. 2, and (3.18) follows from (2.10) . 

Proposition 6. 

tained successively 

satisfying 

. Let yj (T), j =1, ... ,r be solutions ob­

from the system of differential equations, 

't -tt 
y~(~j(T), ~j(T» j 2 j - lyj (T) + yj(T) 

yj(-l) = b j _ l + yj-l(l), j=l, •.• ,r, 

with yO(l) = 0. Here yj(T) is a function continuous on [-l,lJ. 

Then yj(T) is expressed as 

(3.20) ~j (T) = ~j (-r) ~ S?j-l i (l)b j _ l + .~j (T), j=l,'" ,r, 
i=l .' 

where 



~j . (1) = p. (1)" .~. (1), 
,1 J 1 

i=l,···,j-l, 

Further we have 

where 

KI5i = U~j,i(l)uJf~rrll~jl(COS 8)//2sin28d8, 

K16i = [f ~n~j (cos 8) 11 2d8]J2 II~ j -1, i (1)/1 j f~H~jl (cos e)J/ 2sin2ede, 

i=l,···,j. 

Proof. (3.20) is proved directly by mathematical induction 

and (3.21) follows from (1.15). 

Now from (1.3) follows 

(3.22) ., j A A ~ _ j+l A A A 
Y (x(t j ), tj) - Y (x(t j ), t j ), j =l .•• r-l , , , 

Then, by (3.22) and Proposition 4~Proposition 6, the solu­

tions yj(T), j=l,···,r of (3.14) and (3.8) satisfying the in­

itial condition 

is ~xpressed as 

(3.23) 

where 



y.j (-r) = yj ('i j ( T ), 't. ( T ) ) 
J 

. 1 

~ j (T) = - Pj ( T ) ( f ~ 1 ~ j 1 ( s )c,oj ( s ) d s + t: 1 ~ j -1 ,i (1) f: 1~ ~ 1 ( s ) 

tfi(S)dS), 

UQrnj(T)1I ~ o(rn-1 )(U71+I<fj ll q +lly j llq)' 

Substituting (3.23) and (3.11) into (3.7) and (3.15), we have 
r 

(3.24) LObO+Ll[ ~~r,i(l)bi_l+~(l)+Qrnr(l)J = a, 

j "j ('.\ j j-
f x (x (1), t j )( f=l ~j , i (1) b i-I +y (1 )7'j +~j (1) +~j (1) ) 

. I\j " +f~ (x (1), t j )'7j +Smj = C j j =1, • .• , r-l . 

Thus, from the isolatedness and the transversality condition, 

b O and 'Tj are determined as follows : 
r 

(3.26) b O = G-l{a-Ll(f;;Pr,i(l)bi_l+~(l)+Qmr(l»} 

(3.27) "Tj = Ajl[Cj-f~'(!.j(l)+Qmj(l)+~j,l(l)G-la) 

+ ~ H3i(j)bi_l+f~'~j,1(I)G-1Ll(~(I)+~r(I»-SmjJ, 
i=2 

j=2,··· ,r-l, 
where 

j j Aj 1\, fx = fx(x (1), t j J , j=2,···,r-l 

j;;; -1 ~ j 

{
f x'%j,1 (I)G Ll~r,i (1) - fX~j,i (1), J=2, ... ,r-l, 

= f~~j,I(I)G-IL1~r,i(1), i=j+l,···,r. 

MQreover, by the substitution (3.26) and (3,27) into (3.23), 
we have 



(3.28) yj(T) = (~ (T)_yj(T)T+IA-lfj.~ (l)_yj(T)l-TA-l .fj - l ) 
j 2 j x j 2 j -1 x 

r 
'~J' -1 1 (1 )G-la+ L. H4i (j )b i _ l +~j (T)~. -1 1 (1 )G-li (1) 

, i=2 J, r 

+ yj(T)T~lAjl[Cj-f~'~j(l)+f~~(tj)G-lLlir(l)J 

j ( ) I-T -1 [ j -1 - -1 - -+ Y T ~Aj_l Cj_l-fx '~j_l(l)G Ll~r(l)J+!j(T) 

+Pmj (T), 

\1here 

;;; ()A="- () -1 -- j T+l -1 ( ) 
-xj T ~j-l,l 1 G L~r,i(l)+Y (T)--2--Aj H3i j-l 

j I-T -1 ( . +Y (T)--2-Aj_lH3i J-l), i=j+l,···,r. 

II Pmj (T)/I q ~ o(m-l )(II?1I + 1I<fllq+llY/lq) ' 

wi th IICfDq = (i='tf j 112)~ and lJty IJ = (i=Uyj 1/ )Yz • 
j =1 q q j =1 q 

If we put~ in (3.12), Sl = 0, 82 = 0, that is, a = 0, b i = 0, 

c i = 0, 'fJ (T):: 0, i=l,··· ,r-l, j=l,'" ,r, then by (3.27) and 

(3.28), follows "7= 0, yj(T) == 0, j=l,···,r, 1(hat is, h = 0. 

Therefore it readily follows that, for sufficiently large m, 

/\ 
det Jm(a) '" 0, 

A 
or, there exists the inverse of Jm(a). 

Now the linear formulas of F(m)(a) are zO(a) and zj(a), 

j=l,···,r-l, and.the nonlinear formulas are zl' l=l"",m, 

j=l,· ",r, and fJ, j=l,' ··,r-l. Then the number of linear 

formulas of F(m)(a) is rn. We shall evaluate "J;l(g:~)U. 



b3 

and I\J~l(~ g)/I, where (~ ~) and (~ ~) are the matrices of the 
same form as J m, E is a unit (rnm+r-l)X(rnm+r-l)-matrix in the 
former and a unit rn~rn-matrix in the latter,> and O's are zero 

matrices. From (3.2) and (3.3), the dimension of 81 and 82 is 
respectively the number of linear formulas and nonlinear for­

mulas ofF (m ) (ex) • Then the> norms of J~l (~;;>~) and J~l( ~ g) are 

IIJ-l(O 0) (81)U IJ-l(O l" 
IIJ- l (O O)U = sup mOE 8~ = s~p m B.l , 

> mOE (8l,82~'8 U2+B8 02 f3 2 1182 " 
1 2 

I/J-l(E 0)1 = 
mOO 

By the substitution 81 = 0 into (3.27) and (3.28), we 
have, for sufficiently large m, 

or 

r-l ' I 

[Uynq2+ Il'7,,2J~ ~ Ml~ [L c j2+ 1I<fllq2J}2 , 
j=l 

(3.30) 

Here Ml is a constant such that 

, , 1 2 ~ -2,.f- 2 (.) ( I ~11)2 (maxIA-j") +~ Aj ~ H1iJ + 2Kl max Aj 
j j=l i=l j=12·· ·r-l 

l-O(m-l) 
oM ,~ 

1 

, 
\llhere 

{ 
(lIf~U+Uf~~j,1(1)G-ILl')K15i, i=l,···,j, 

nf~~j,1(1)G-ILlIK15i' i=j+l,···,r, 



+IA~~1IHli(j-l»)fKI6i' for i=l,···,j, 

n 2j (T)9?j_l,l (1)G-ILl"nK15i+Kl (I A~llHli (j) 

for i = j + 1, ... ,r, j = 1, •.. ,r. 

I/J-l (E 0)1/ 
mOO is also evaluated, by the substitution 62 = 0 into 

(3.27) and (3.2S), as follows 

[/1711 2 + U Y I ~]~ ~ M 2 ( II a 1,2 + i 2" b j _11/2 )~ 
or 

(3.31) 

where M2 is a constant such that 

r-l l' 1 2 r-l 2 r 2 r 
M2 ~ [LIIAj- fJ'~j l(l)G- II +LAj- LH3 .(j)+L 

j =1 x,.. j =1 i=2 1. j =1 
r 1 .. 1 2 

+L{II~.(T)U +KIIAj- IlIfJ.f.(lH+KIIAj- IlKS} 
j =1 J n x J -

• U~ •. 1(1)G-11l 2 ]J2 !(l_O(m-l ». 
J , 

Now we put 
') 

J~(a) = [O,E]Jm(a), 

where 0 is a zero (rnm+r-l)X rn matrix and E a (rnm+r-l)X 

(rnm+r-l) unit matrix. Thus J 2 (a) is a Jacobian matrix cor­

responding to the nonlinear fo~mulas of F(m)(a). Let 

a' = l' l' 2' 2' r' r" , 
col(a ···a a ···a ···a ···a t ···t ) o mOm 0 m 1 r-l 

and 

a" = 1" 1" 2" 2" r" r"" " co 1 (a ... a a .•• a .• • a ... a t l' •• t 1 ) o mOm 0 m r-



be arbitrary (m+l)rn+(r-l)-vectors such that 

';\ L.. "A L 
Itj-tj I = 002' I tj-t j I = 002' j=1,2,· .• ,r-l, 

j ' j' m" j" ," 
and both x (T) = a O +J2LaJ T (T) and x (T) = a J 

n=l n n 0 
m j" 

+J22:. a T (T) satisfy 
'n=l n n 

U x j , (T ) -'ij (T ) II n ~ ° 01 and II x j " C"r ) -Qj (T ) II n ~ ° 01' 

for j=l,'" ,r. 

Here 001 and 002 be numbers in (2.6) and (2.7). Then, by the 

similar calculations of UJ (a')-J (a")R in the reference 2, m m 
we have the following important inequality in the proof of 

Theorem. 

(3.32) 

§ 4. Proof of Theorem 

By Proposition 3 and the first of (2.9), the point 
Aj /\ E. > (Xm(T),tj(-r» (T [-l,lJ, j=l,···,r) lies in U for"any m::= mO 

provided mO is sufficiently large. For such m, let us put 
1 ' 

rO = LL'iJi«_l)i+l), r j = f(~mj(l), 't j ), 
i=O i m 1 

1\ ' /.\ j'\ 

dX~(T) 1\ tj-t. 1 
Rj = - P yj (~j (-r) t (T» J -

m dT m-l m 'j 2 , 

for Tf[-l,lJ, j=l,···,r. 

Then, in the same way as §3-4 of Ref. 2, we have, for some 

constant K, 

(4.1) 



(4.1) expresses that a 

determining Eq o(1.17). 

A 
= a is an approximate solution of the 

From the first of (2.9) follows 

( 4 . 2 ) II ~j (T) - ~j (T ) U m n 
~ K oem) 

17m(m-l) , 

with K17 = max K{7' 
j =l ••. 1" , , 

For K17 , let us denote by nm the set 

where 
. .. . Aj ~. Aj 1\ • 

~J = col(aJ a J ••• a J ) ~ = col(aJ a .,. a J ) j=12 ... 1" 
'" 0' l' 'm' ,·0' ·1' 'm' " ,. 
For X~(T) = a~+J2ta~Tn(T)' j=1,2,"',1" and t j , j=l,2,"', 
1"-1, such that n=l 

1 1 1 r r r (4.3) a = (aO,a1 ,··· a ... a a •.. a , m' , 0' l' 'm' tl,···,t l)E n , 1"- m 

we have, by the third of (1.16), 

• 1\' tf.. K17o(m) 
a x~ ( T ) - x~ ( T ) U n = ° 01 - m (m -1 ) , j = 1 , ... ,1" , 

1\ L. 
Itj_-tjl = 002' j=1,2,···,r-1. 

Then~ by (4.2) and Proposition 3, the point (X~(T), t j (l»; 
eTf [-l,lJ, j=l,···,r) corresponding (4.3) included in U. 

This means that F(m)(a) is defined in nm. For an arbitrary 

number K < 1, and the numbers M1 ,M 2 and M3 in (3.30)~(3.32), 

we put 
K17 o(m1 ) 

01 = min'[M3~1 ' °01 - m1 (m1-l) , °02 J 

> and take m2 = m1 so that 

(M1 +M 2 )K -i _°1 
l-K m < 2m+ 1 ' for any m ~ m2 • 



Let us now take 0 m such that 

(JVl l +M 2 )K 
-~ "-

Om 
L-

01 
l-K m.;t. = = 2m+l 

and consider the region 

no {a 
A L Om }. = . II a-all . 

m 
Then 

( 4 . 4 ) n ° C nm 
m 

and further, for any a E no and m > m2 , 
m 

(4.5) lIJ 2 (a) _ J2(~)1I ~ ~ 
m m 00 1 

(4.6) (Ml+M2)J1F(m)(~)1I f 
l-K - om 

Thus, from (4.4)~(4.6), and Proposition 1, we see that the 

determining Eq. (1.17) has the unique solution a = a in nOm: 
This proves the existence of the approximate solution in the 

form of the connection of Chebyshev series tied at switching 

times. From (1.25) in Proposition 1 and (4.2), the conver­

gence (1.21) is proved in the same way as §3.5 in Ref. 2. 
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