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1. Introduction 
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The stability condition for the scheme of difference equations 

with constant coefficients with periodic boundary condition is 

proved by P.D. Lax and R.D. Richtmyer(5), to be equivalent to the 

uniform boundedness of the norm (see §2) IGn(L\t,k) I in D={O<6t<T, 

1~n~T/6t,k}. Here k=(k1,···,kd), ki =2wr i /L i , ri=O,±l,±Z,···, d is 

the number of spatial variables and Li are the periods. G(6t,k) 

is the amplification matrix introduced by the Fourier transformation 

of the difference equation, and its dimension m is equal to the 
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number of dependent variables. 

J. von Neumann's necessary condition on the eigenvalues A 

of G is IAI~l+K~t, where K is a constant in Do 

T. Kato (3) showed that, roughly speaking, if the larger 

eigenvalues of G have simple elementary divisors and if either 

(1) the eigenvalues are separated from each other by a fixed amount, 

or (2) the associated normalized eigenvectors have the Gram deter­

minant (see §2) larger than a fixed number, then the von Neumann 

condition is sufficient. 

H.O. Kreiss [4] obtained four necessary and sufficient con­

ditions, but his conditions are often difficult to apply to the 

practical matrix calculation. 

M.L. Buchanan [1] found the necessary and sufficient con­

dition for the upper triangular matrix form, to which G(~t,k) can 

be transformed by a unitary matrix ~nto 

(1.1) A(~t,k) = 

a12(~t,k)----al m(~t,k) , 

o A (~t k)-----a meAt k) 
2 '" 2,' 

0----0 A (~t,k) a (~t,k} m- 1 m-l , m 

0-----------0 A (~t,k) 
m 

with the diagonal elements nested with a nesting constant R(i.e. 

IAi-Ajl~RIAr-Asl for all ranges with l~r~i~j~s~m). 

Her condition for the stability is that there exist constants 

K and L such that in D 

IAil ~ 1 + K~t, 

2 

1<-< =1=m, 



atid* 

(1. 2) ~ L, l~i<j~m. 

The lemma (1) of T.Kato is deduced from her result, but the 

1emma'(2) is not. 

The equivalence theorem of P.D. Lax and R.D Richtmyer is for 

the limit 6.t+O. The actual calculation is practised for a t.ini te 

6.t. Richtmrer and Morton showed the examples in which the stability 

condition is satisfied and the difference calculation runs practi-

cally unstable even in early time steps. Hence, they imposed a 

severer condi tion on the maximum eigenvalue I A I max in D for a finite 

6.t for practical stability as a modified von Neumann condition [8]. 

In this paper we take the eigenspace intQ consideration. In 

§ 2 ,we show that if ! G I is bounded and its spectral sets are separat­

ed each other by a fixed amount, then the Gram determinant of the 

matrix of the normalized basis of the subspaces for these sets can 

be made larger than a positive constant. Hence Kato'~ condition 

(2) is deduced from his condition (1). And Buchanan's criterion 

(1.2) is necessary only for the set of such eigenvalues Ai (6.t,k(6.t)) 

in D, that converge to a multiple eigenvalue for k=k(6.t) in the 

limit 6.t+Q. 

In §3 we show that occasionally the norm increases with n for 

some eigenvalues A, i.e. !Gnl_nhIAln-1IGI, where h~l. This would 

*Her result is misquoted by Richtmyer and Morton [7] and V. 
, 

Thomee [9]. 
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cause the practical instability in the early time steps, rather 

than I'Gnl~IAlnmax' in the case IAlmax-l. 

If IAI<l, it decreases to 0 for sufficiently large n, then the 

practical instability will disappear, unles~ there is a large 

eigenvalue IAlmax>l in D. 

In §4 two examples of the .practical instabil i ty are discussed. 

One of them indicated by H.Takami (Fig.2) is that, IAI=l in D and 

the stability condition is not satisfied, but the modified von 

Neumann condition is satisfied. We show in this example that for 
n 

the eigenvalue with index 2, GN4 and IG 1-4n, which causes the 
" 

practical instability, where IAlmax=l. 

In another example, one in Richitmyer and Morton's book[8], 

the modified von Neumann conditlon is satisfied and yet the condition 

for the eigenvalue to be of index 2 is satisfied. Therefore, the 

practical instability occurs in the early time steps . .. 

Before stating our results, we recall some relevant notions 

of the 'spectral theory and matrix representation ·of linear op&t'­

ators (see Dunford and Schwartz [2], T.Kato [3] and van der Waerden 

[10 ]') . Let G be a linear operator in unitary space X of dimen-

sion m(dim X=m<oo), AI, "', As (s~m) be the distinct eigenvalues of . , 

G and the set o={A ... 'A } 
, 1 ' 's be the spectrum of G. The set of 

n . 
all Uf.,X such that (G-A i ) u=O for some integer n forms an algebric 

eigenspace X(A i ) of. X. The smallest n for which this is true for 

all u£X(A i ) is called the i"ndex of Ai 'and is denoted .by 11 i . A 

vector u~O is an eigenvector of G for Ai if (G-Ai)U=O. Any subset 

4 



a'~ a is called a spectral set, and the set X(a') of all ue X such 

that A.~a,(G-Ai)nui= 0 for some integer n is an invariant subspace 
1. 

for G. For two separated sets a' and a" (a 'Il a"=O), the spectral 

distance of a' and a" is defined by dist(a' ,a")= min IA'-A"I. 
1 'E a' 
X"E-O" 

Let {x ... x } be an orthonormal basis in the unitary sp~ce 
1 ' , m 

X. Then a vector u m . = raix.EX 1S represented by the column matrix 
1 1. 

u = 

G can be represented by an mxm matrix as a linear transformation of 

the column matrix u into Gu. In the following, u, v, •.. indicate 

column vectors. The inner product of u and v(= ! b.x.) is (u:~)= 
1 l. 1. 

~ - b d h f . lul=(u,u)~/~. F h h ~ a. ., an t e norm 0 vector u 15 urt er t e 
1 1. l. 

norm of matrix G is defined by IGI= max IGul/lul and the norm in 
O,,"UEX 

invariant subspace X'=X(a') is defined by IGl x '= max /Gui/iul. 
P;\utrX' 

Let {u' ... u'}, be a basis of any invariant subspace X'=X(a') 1 ' , m 

and U'=[u1',···,u' ,] be an mxm' matrix of which the columns are the m ' 

basis, then G is reduced to an m'x~' matrix G' such that GU'=U'G'. 

Further let U=[U', U", ... ] be the union of such matrices U', UtI, 

then G is reduced to a direct sum such as GU=U.(G'~G'~···). 

The Gram determin~nt.o£ U' is a determinant of the product 

of conjugate transposed matrix U'* and U', i.e. det[U'*.U'], and 

is a square of the volume of parallel polyhedron spanned by the 

basis {u~'··" u'm'}' 
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We consider the initial value problem with constant coeffi­

cients and with simple boundary condition, so that the Fourier 

integral representation of the solution can be used . If" there 
. 

are p dependent variables in d-dimensional space, then the differ-

~ntial equation ~s given as 

_d_.u (x, t)= P'( _d_) u (x, t) , 
at a,x 

where u is a vector with p components and x is a vector with d 

components. 

of a 
P( ;x) is a pxp matrix whose elements are polynomials 

a --, ... , --. 
dX 1 

If the solution of the initial value problem. 'is expressed as 

u(x,t) = (27T)-d/2 Jdk ~(k,t)ei(k,x), 
'then (2.1) becomes 

a ........ "" ~ u(k,t) = P(ik)u(k,t). 

Hen~e the solution is 

(2.2) 

Now let us start our statements. Let G be a linear operator 

in a unitary 'space i, and a' and a" b~ separated spectral sets 

of G,' the~ X'=X(a') and 'X" =X(a") are invariant sub~paces of G. . ' 

Let dim X'=m', dim X" =m", and n'= E11i' 11" = E11i be' the sums of 
, 'A. f a' A. .'&- a" 

i 1 

th~ .ind~ces . 

. -.The fir,st lemma,. reads: 

Lemma 1 ~ 

then the 

(2. 3) 

.Let,:u.'eX' atld u"e)C' be vectqrs,such tha,t lu'I=lu"I=I,j 

following i~eq~aljty holds for.the,Gram determinant~ 

det{ [u' ,u" ] 'It. [u' ,u" ]}~ [dist(a' '~")) ~Ml 
IZGI 

~ 
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where M 1 =m i n (n ' m ' , , n" m') . 

Proof. Let u"r:X" be decomposed such that 

(2.4) u" = cu' + w, (u' ,w)=O, 

where the coefficient c is given by 

(u' ,utI )=c(u' ,u')=c, 

. Since u 'E X', we have 
n· II (G-A) l.u'=O. 

A ~ a' i 
i 

Therefore 

I II ( G - Ai) n i u "I = I IT ( G - Ai) n iw I ~ IT (I G I + I A i I ) nil w I 
AiEa' AiEa' AifO" 

(2.5) 

The operator IT (G-A )ni is regular in the invariant subspace 
\ E' i 

X" =X(a" ). 
1\ i a 

It follows that 

(2.6) 

-ni 
lu"I=1 IT (G-A) 

A EO" 
i 

On the other hand, Kato's lemma (see[3]) says for any linear 

operator T in a unitary space X with the inverse T- 1 that 

For an invariant subspace X" E X, the lemma is that 

(2.7) m" = dim X" , 
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where I T I i~ the norm in X" is the restriction of T 
X"I . 

on X" for T = TI (G-A )ni. 
AiEa ' i 

Then (2.7) becomes 
m"-l m" 

I (G- Ai)-1I x" ~ 12GI /dist(a' ,a" ) 

Since 

we have for A. E a' 
l. 

I > m" = TI IA -A I = dist(a' ,a") . 
A;(:a' j i 

J 

substituting the above relation into (2.6), we have 

(2.8) Iwl dist(a',a") n'm" ~ ( - -) I utI I . 
12GI 

Then by (2.3) the Gram determinant becomes 

* *. 
det{[u',u"] '[u',u"]} = det{[u',cu'+w] .[u',cu'+w]} 

, * = det{[u',w] ·[u',w)'} 

= 
(2.9) 2n'm" lu'12 o. dist(aV,a") 

o Iwl 2 ~ 12GI 

lu'I'= 1. 

• 

In (2.9), X' and X" can be exchanged and hence the lemma 1 is proved. 

The second lemma reads: 

Lemma 2. Let normalized basis of X'', X" be {v' ~ .. VI } and 
1 ' , m' 

{v" '" v" } their matrices be V'=[v' ... 'v' ] V"=[v"··· v" ] 
l' , m'" l' 'm t ' 1" m" 

then the following inequality holds for the Gram determipant: 
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* d' t (t ") 2M det{[V',V"1 '[V',V"]}~( IS a,a ) 2. det{V'*.V'}'dettVil*.V"}, 
12GI 

where 

Proof. We choose a normalized basis {utI (! X", i=l,··· ,m"} 
i 

so that the following decomposition holds: 

(2.10) utI =u' + w iii' U'E X' 
i ' 

for i:\:j. 

Let the matrix of their vectors be 

U"=[u"····u" ] U'=[u"" 'u' ] and W=[w ····w ] 
1 mil , 1 mil 1 m'" 

then 

UtI = U' + W. 

Let the matrix of any normalized basis {vIEX', i=l,"',m"} 

be 

Then the Gram determinant is given as follows: 

* * det{l'P,U"] '[V',U"]} = det{[V',U'+W] '[V',U'+W]} 

* V' • V' .j 

* 
(2.11) = det{[V',W] '[V',W]}= a 

* = det{V' 'V'}' TI Iwil2p 
i=1 

m" 

by making use of (2.10). Let the matrix of any normalized basis 

{v" '" X", 1'=1,"" ,m"} be VIi - [Vii Vll'j ~ - 1"'" mil' 
i 

Since UtI is also (he matrix of normalized basis in X", there 

exists a regular matrix S" such that 
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(2.12) V" = U" S". 

[V' ,V"] = rV', Utt ] [ 
I , 

. m 

o 

Then 

where Im.'is a unit matrix of dimension m' . Therefore, it 

follows for the Gram determinant that 

* * * det{[V',V"] • [V',VtI]}=det{[V',U"] '[V',U"]}'det{S" .S"} 
(2.13) 

by (2.11) and (2.12), and for the Gram determinant of (2.12) that 

* * * det{V" ·V"}=det{U" ·U"} ·det{S" ·S"} 
(2.14) 

* ~det{S" .S"}, 

since U" is a matrix of normalized basis so that det{U"*·U"}~l. 

Substitution of (2.14) into (Z.13) yields 

* * * mil 
(2.15) det { [V I , V"] . [V I , V"] } ~det {V' . V' } . det {V" . V"} i~1 1 wi 1 2, 

where 
mil 
II 

i=1 

d ' (' tI) Iw 12 ~ ( 1St a 'O)2M mil 
i IZG 1 1 

from lemma 1. Since X', X" can be exchanged in (Z.15), 

Lemma 2 is proved. 

Hence Kato's condition (1) in §1 is deduced from his condi-

tion (2). 

Lemma 3. Let T and U be m-dimensional square matrices, rows or 

columns of U being normalized, and let 

* det{U ·U} ~ 6 2 > O. 
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Then 
I [U- 1 T U] ij I < I JIll 2 I - max Tijl, 

lJ. i,j 

m2 
T U-1]ijl ~ - maxlTijl. 

lJ. i,j 
I [l1 

This lemma is easily proved by Cramers rule. Further, the 

following lemma can be deduced from lemma 2 and lemma 3. 

Lemma 4. Let the spectral set 0 of a linear operator G in a uni tary 

space X be decomposed into two subsets 

(J = { a ' , a" } , 

with 

dist {a' ,a"} ~ p > 0, 

aad let X' and X" be subspaces for a' and a", then 

m3( 12pGI rM2 max(IGnl x " IGnlx,,)~IGn'l 

~ m 3 ( llil.)+ M 2 • max ( I G n I , ., I G n I " ) • 
p x x 

In the difference scheme of an initial value problem the dimension 

m of the amplification matrix G is nearly equal to the number of 

dependent variables. Elements of G are rational expressions of 

time step lJ.t, space differences lJ.x j and exp[ikjlJ.x j ], where j=l, 2, 

d, and d is the number of space variables [5] . 

For the difference scheme, a functional relation lJ.xj=lJ.Xj(lJ.t) 

is assumed such that lJ.Xj~O as lJ.t~O. 

-fication matrix. fbr G(lJ.t,k) in D. 

Hence we may take the ampli-

Take any functional relation k=k(lJ.t) in D. If a(k(lJ.t)) is 

the maximum spectral set of eigenvalues which converge to a multi­

ple eigenvalue and if the invariant space X'=X(a'(k(6t])is defined 

in O<lJ.t<T, then the following theorem is derived from lemma 4. 
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Theorem. The necessary and sufficient condition for IGn(At,k) I 

to be uniformly bounded in D is that there exists a constant M 
U IG (k(lIt)) I ,< M, x 

in D and for all k(At), where X'=X(cr'(k(At))) is such a subspace 

that cr'(k(lIt)) is a spectral set of which elements converge to a 

multiple eigenvalu~ as At~O. 

Particularly when all eigenvalues have index 1 in the limit 

At~O, I GU(k(lIt)) I , becomes I AU(k(At)) I and this condition coin-x 

cides with the von Neumann condition. In this case the von Ne~mann 

condition is sufficient as well as necessary. 

3. Practical stability condition for the finite lit. 

The stability condition is a condition in the limit of lIt~O. 

Richtmyer and Morton [8] shqwed the various examples which satisfy 

the stability condition, but their calculations were practically 

unstable for a: fini te At. They take as a modified von NeumanB 

condition the restriction 

(3.1) 

where r=max Re~, ~ is the eigenvalue of P(ik) in (2.2) for all k 

and all eigenvalues for each·k. ·Although the practical instabili-

ty often depends on the initial·condition, we consider only the 

practical instability caused ~rom the amplification of the vector 

by GO. The power of the eigenvalue IAnl is not always adequate max 
U 

to use for the norm IG I. 

In fact the square norm IGI2 equals the maximum e1genvalue 

* of G G, but IGI2 is not suitable to deal with the iterated norm 

Sometimes it happens that IAI is near 1. . max 
In this case,· 
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IAl nmax grows slowly for small n, but the calculation becomes prac­
n 

tically unstable in the early time steps, although IAI max varies 

slowly for small n. 

In the following we estimate I Gn I in terms of its eigenspace, 
h n-1 

and we show that IGnl grows sometimes as n IAI IGI for small n, 

where h~l. We shall let the elements of G remain constant and 

increase n. 

(1) Let A', A" be distinct eigenvalues of G, and u' and u" be 

normalized eigenvectors for respective eigenvalues. 

vectors lemma 1 is simplified as 

(3.2) IA'- A"I I GI ~ --
* 1/2 2(det{ [u' ,u"] . [u' ,u'~]}) 

Then 

where 

(3.3 J 

For the eigen-

11,-1 

~ IIA'I-IA"II'IA"I'n for I A' I> I A II I. 

n 
For IA'I<l, IG I decreases to 0 for sufficiently large n. 

Concerning the limiting case A"-+A' in (3.2) we deal with the 

eigenvalue of which the index is larger than unity. 

(2) Let the restriction of G on the irreducible eigenspace 

X'=X(A') be 
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(3.4) A' = 

A' 'a 
12 

o A' a 
2 3 

. . . •. a 
1 m' 

A I a , 1 m - , 

o A' 

m' 

for an orthonormal basis of X' . 

We decompose (3.4) into two parts such that 

(3.5) A' = A'I + A", m' 

where I , is an unit matrix of dimension m' and A" is the remainder m , 
rna trix for which we can show (A") m =0. Using (3.4), we have 

(3.6J 
n n n - 1 n n - h h n n - ~ + 1 m' -1 

A' = A I I + n A ' A" + . .. . + ( ) A ' A' (. + • • • + ( ) A I A" 
m' h ~m'-1 

Since (i,i+l) elements are zero in A" 2 , AII 3 ,. "', we have 

(3. 7) IA,n l ,~nIA'ln-,1.max la I 
x i i'i+1' 

where ai' i+1~0 for i=l,"', m'-2, as X' is irreducible. 

Next let 

A"h 
max 1---­

h hi . A I 
• 

then from (3.6) we have 

m' 
IA,n l <IAlln(nB) - 1 < 2(nB)m'-1IA ' l n , for nB~2. 

'x' nB-l 

In the case of I A I I =l-c, where c is a" small positive number, the 

above power attains to its maximum at n=(m'-l)/c, and then decreases 

to 0 as n increases. 
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Thus even if the stability condition for ~t+O is satisfied, 

some practical instability may occur, when the di~tance between 

the normalized eigenvectors is small, or when there is a large 

coefficient in the upper triangular matrix for orthonormal basis of 

the irreducibl~ eigenspace. If the absolute value of the 

eigenvalue in question is 'smaller than 1, this practical instabili­

ty may disappear for sufficiently large n. 

4. Examples of the practical instability. 

We apply the above considerations to the following examples. 

In the first example of the numerical so~ution f0r the wave 

equation by H. Takami (private cornrnumication. Fig.2) the absolute 

value of the eigenvalue is 1, and therefore the stability condition 

is not satisfied, but the modified von Neumann condition is satis-

fied. The eigenvalue with index 2 is -1 and the upper triangular 

element of (3.6) is 4, and hence IGI N 4. 

In the second example by Richtmyer and Morton about the wave 

equation coupled with heat flow (Fig.3.see [8]), an instability 

occur~ from the fi~st step and grows more and more with n. In 

this case the stability condition is satisfied but the modified 

von Neumann condition is not. The maximum absolute eigenvalue 

is 1.7. We use the same example to see the effect of existence 

of the eigenvalue with ipdex 2 of the amplification matrix. The 
. 

modified von Neumann condition is necessary for the condition that 

nu eigenvalue of index 2 should appear, although both c~nditions 

almost coincide numerically (Fig.l). 
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Example 1. The wave equation is a2 u/at 2 =a 2 u/ax 2 , or equivalently 

J 

av aw 
= 

at ax 
(4.1) 

l aw av = 
at ax 

where v(x,t)=au/at, w(x,t)=au/ax. According to the scheme of 

Courant-Friedrichs-Lewy, we set 

J 

11 
V. = V (j f::.x, nf::.t) 

J 

(4.2) 

l n 
w((j++)f::.X, 1 w = (n+-2-) f::.t). j 

The finite difference equation corresponding to (4.1) is 

(4.3) 1 

n+1 n + v(wn W~_l) Vj = Vj -j , 
n+l = wn + (n+!. vn+1) W v Vj +1 j 

t 
j j 

n n n 2( n 2 n n 
= W + v(v'+ l V j ) + v wj +1- Wj + w 1) 

.1 J j - , 

where v= f::.t/llx. The amplification matrix is 

(4-.4') G(k,f::.t) 

i 1 
I 

= ! 
l2ive iW / 2sin(w/Z) 

2ive- iW / 2sin(W/Z)J' 

l-4v 2 sin2(w/Z) 

where w=kf::.x, kc 2nr/L, r being an integer. 

The eigenvalues are 

A=(1-2v 2 sin 2 (w/Z» ± 2vsin(w/2)' v 2sin 2 (w/2)-1 

Therefore, IAI >1 for Ivsin(w/2)1;1. max 

Let v=l, then the matrix (4.4) is diagonalized as 

16 



(4.5) J\ (00) = [ e-
iw 

0 J 
o e iw 

by the matrix U of the normalized eigenvectors: 

[ 
1 e- iW

/
2 J 

-1 e iW / 2 

(4.6) 1 = 
12 

U(w) 

Eigenvalues of (4.5) tend to multiple eigenvalues -1 as 00 tends 

to 7T,' and the Gram determinant of U tends to O. 

According to the statements mentioned in §3, the matrix of 

an orthonormal basis for (4.4) is 

(4. 7) v = ._1_ 
n: ~ ] 

and G is transformed by the unitary matrix (4.7) into 

(4.8) A(wl = (:-iW 4sin2 (00/2) J . 
e iw 

The stability condition is not satisfied due to Buchanan'S 

criterion. nevertheless the modified von Neumann condition (3.1) 

is satisfied. Further 

(4.9) 

For W=7T " the above matrices become 

A(7T) = r -1 

-: 1 L 0 - ..I 

(4.10) 

and 

(4.11) 
n 

A (7T) = 
(_:1" 

17 

2 tan ( 00 / 2) . sin ( nw) ] • 

e inw 

(-11n_14n] 

(_l)n 



n 
The multiple eigenvalue A(n)=-l has index 2, and by (4.11) IA I 

n 
grows approximately as 4n, while IAI =1. 

In this case (v=l), the finite difference equation (4.3) has 

the general solution: 

(4.12) 
J V(X,.t) =f(~+t) -g(x-t) 

~W(x,t)=f(x+t)+g(X-t) 

n 

r.., J V! = F (j + n) - G (j .- n) , 

\W j =F(j+n+1)+G(j-n) , 

with arbitrary functions F(j)=f(j6t) and G(j)=g(j~t). Note that 

the solution (4.12) are the same as that of the differential 

equation (4.1) restricted on the mesh points. 

Now we give some examples to see the behavior of the solution 

of the practically unstable finite difference equation (4.3) in the 

case of v=l. 

(4.13) 

Let us take an initial condition: 

0, 

x < 0 , 
x > 0 

then we obtain the following solution: 

1 
) 

x ~ -t 

v(x,t) = 1/2 , -t<xSt, 

0 , t < x • 
(4.14) 

( 0 x ,-t , 

w(x,t) = ~. -1 - t<x~t t ~ 

~ 0 , t < x , 

SO that the initial condition for the finite difference 

(4.3) is 

18 
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( 

J (4.15) 

\ 
and its solution 

In stead of 

(4.16) 

0 v. = 
J 

0 
w. = 

J 

t 
1 

0 

eli 2 f 

o , 

j $ 0. 

j < 0 t 

j = 0, 

j !;. 0 1 

is the restriction of (4.14) on the mesh 

(4.15), we take an initial cond'i tion: 

0 \ 
1 j ~O , 

Vj = 
0 j > o , 

point's. 

This is equivalent to take additional functions v and w, the initial 

condition of which is 

j = 0 

j ~ 0 

Its solution is 

n 
Vj = E(n+j)-E(n-j)= 

n+j , 
n f (-1) /2 

Wj = E(n+j+l)+E(n-j)= lo ' 

where t o, 
E(· " J.I j-l 

• (-1) /2 , , 

j ~ 0 , 

j > 0 • 

else', 

else I 

To introduce periodic condition, we take ,the convolutions of 
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the above solution and a periodic function of which the mean value 

is zero : e.g. 
-1 

P(j) = +1 

o 

j =0 , 

j=No 

else 

O<N <N o , 

where N is the period of the functions. Since the equation is 

linear, the convolutions 

00 N-l 
Pvj - r r 

R,,..-oo k=O 

n 
P(k+R,N)v j _ k , etc. 

n 
are also the solution. It can be shown that PY j etc. are well 

defined and periodic with the period N. 
n 

Consider, for example, the error terms PYj 

If both N and No are even,ampli~udes of these convolutions 

grow infinitely as n~oo. This corresponds to the infinite growth 

of the iterated amplification matrix IGnl when w=~. In fact, 
n 

the infinitely growing component of PVj is the one proportional 

to (-I)j+n.When either No ~r N-N o is odd, no. solution grows 

indefinite~y because N is fixed and no·Fourier component grows in-
n 

definitely. Anyway, the amplitude of PVj is the same order of 

ma,gni vude as .tha t 0 f itself, and hence the profiles of 
n n 

and P(v j + Vj ) are quite different. 

Aside from the wave equation, it is difficult to find an 

initial condition with no loss of accuracy and with no growing 

components. In practical usage, components for large 

k(=Nw) are not important, and practical instabilities occur at 

such large k's, since the components for small k behave approximate-
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ly like solutions of the differential equation by virtue of the 

consistency property of finite difference equation. Therefore, 

we can avoid the instability at the expense of accuracy; that 

is, suitably mollifying the initial conditions we apply the same 

difference equation to get rather smooth solution which contains 

small components with large k's. 

For example, we start by the initial conditions which contain 

the convolution of the given initial values and the smoothing 

function ~(j)=(~)2-J, with an integer J~O. Spatial shift by 

J, 
2 is brought about, and its correction is necessary. 

Y' (j) = 2-J (i) Fourier Transform > 
J 

(cos (k'IT/N)) Ikl~N/2 1 

0 -J J J 
*~= (s) 

0 PVj 2 r PV j ) 
s=O -s 

J ............ o 
(cos(k'IT/N)) Pv (k). 

n n 
Let us apply this scheme to the solution PVj, PWj (J=l). 

1/4 j=-n+1, 
n 

* :r PVj = 
_1/4 j=n+1 

0 else 

The following figure will be useful to understand the above result 

......... ~. . 
L. ~.~. __ .... ~ • .-... ~ • .-.... ~ • .-.... ~.t-.... ~.--"'.1---: 

.. . 
. .. . '. .. ....... . 

JCl\ 

the exact solution of differential equation 

~ the solution of finite difference equation with the initial 

condition (4~16) 
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• the smoothing solution of A with correction shift by -1/ . 
2 

Note that, in the case of wave equation, the convolutions with 

~(~) give the exact solution for v;=o, and they give the solutioll 

shifted by 6.t/ 2 on the space axis and by 6.t/2 on the time axis for 

These facts are deduced from the general solution (4.12). 

Next let us take the following initial condition: 

j vo= 2f(x) 

(4.18) 

\ wo= 0 

Its solution is 

j v = f(x+t)+f(x-t) 

\w = f(x+t)-f(x-t) 

{ 
l-x2 , I x I ~1 , 

= 

0 I x I > 1 , 

( v; = F(j+n)+F(j-n), 

~ 1 Wn = F(j+n+1)-F(j-n) 
j 

Let us take the initial condition for the finite difference equation 

corresponding to (4.18) such as 

(4.19) 

t1-(j6.t)2, 
= 2F(j)= 

o , otherwise , 

{ 
- (j+1/2)6.t 2 , 

w~ = F(j+1)-F(j) = 
J 

o , otherwise, 

where 6t=1/M (M:a positive integer). We obtain the exact solution 

for (4.1) and (4.18) as the solution of the finite difference eqs. 

(4 . 3) and (4.19). 

If, instead, we start with the initial condition 
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{ 
vj = 

WO = 0 
j J 

2F (j), 

we get the solution 
n n 

Vj = F(j+n)+F(j-n)+oj 

n n 
Wj = F(j+n+1)-F(j-n)+E j 

with additional error terms: 

9>(j +n) - P(j -n) 

~ (j + n + 1 ) + ~(j - n) , 
where 

o , jf1t~-l , 

j+M 
<'p(j) = )f1t, -lsj f1t~+l , 

j-M 
(-1) 6t) jf1t~l , 

n < M 

8~ is given as follows 
J 

-M-'YI. . ~ 0<At)2 
---41.t--4.t--4I.~y Y-M+'r1. 0 M-1'I. 

the profile of 

n > 

-At 
In this case also, the mollification by the function gi:tres 

the exact solution, 

Example 2. The wave equation coupled with heat flow. 

This stability condition is discussed by Richtmyer and Morton. 

The amplification matrix for their scheme is 
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r 
1 ivs -i(y-l)vs 

G = ivs 1-v 2 s 2 (y-1)v 2s 2 
(4.20) 

-ivs V 2 S 2 -(y-l)v2s2+l ----
11S2+1 11S2+1 11S2+l 

where y=cp/c,,~ a=thermal concluctivity/cv ' s=2 sin(-~- 6x), k=21Tr/L, 
2 

r is an integer, v=c6t/6x and 1l=a6t/(6x)2. 

The stability condition [6] is 

(4.21) v = c6t/6x < 1. 

Though the above stability condition is satisfied, the calculation 

of .the propagation of a simple jump shows sometimes the unstable 

profile from the first step. The modified von Neumann condition 

is IAI~l, and leads to the practical stability condition 

(4.22) v < 1(1+211)/(y+211) . 

Fig.3 shows the unstable profile in an early time step for 

(4.23) y=3.0, v=(13+2)/s, and V/11=S/3, 

where the stability condition (4.21) is satisfied but the modified 

von Neumann condition is not, and the instability grows more and 

more with n. 

Now, we shall show that even if the stability condition c6t/6x<l 

and the modified von Neumann condition 

satisfied at the same time, the solution can be practically 

unstable. First we shall look for the condition for the matrix 

G of (4.20) is reduced to the diagonal form 
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G o 

o 

o 

o 

o 

o 

Then the rank of G-Al is 1, the necessary and sufficient condition 

for this is obtained from (4.20) as 

Al=l and s=O or v=O. 

For this case the rank is 0 and G is a unit matrix. Hence, it 

is found that the double eigenvalue has the index 2 when G has two 

equal and one distinct eigenvalues. We shall" look for the condition 

for G to have double eigenvalues. 

The characteristic equation for (4.20) is 

and since 

~ = 0 
dA 

for the double eigenvalue, we get 

(4.25) f(A,K)=(YK+(A-l)(A+1))(K-l(A-1)+Y(A+1))-(A~1)(A+2)2=0, 

where 

(4.26) 

and 

",2 S.2 = -(A-I) ((I+YK)A-(l-YK)) 
A(A+2) 

The double root of the cubic equation (4.24) with real coeffi­

cients is real, and from (4.25) we see that the double root of 

(4.13) is in the interval 
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-1 < A ~ 2 

It is not difficult to see that the eigenvalue of the greatest 

modulus is near -1 in the complex plane, and that it moves monotoni-

cally to the double root of the modulus less than 1 when we vary the 

parameters (~, v, s) continuously, and if s=2 sin(k~/N)~O, the 

corresponding components become stable in any sense. Theis means 

that the modified von Neumann condition 11..1<1 is necessary for G to 

have no double eigenvalue of index 2. 

Therefore, we investigate the case of v/~=a, where a is the 

lower bound of v/~ to have the double eigenvalue A for each fixed v. 

In this case the component corresponding to the double eigenvalue 

A is one with s=-2 (i.e. k~x=~), that is, the component is propor-

tional to (_l)n-jIA/n, where A is noted to be real. This suggests 

that the mollification used in the first example is also effective. 

Since the general solution or any other elementary expression for 

the solution is not found, some of our numerical results are given 

in Fig 4a) and b). 
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v=c6t/6x 

Stability condition for 6t4Q. 
1.Or~----~~ ______ ~ __________ ----~--

1//3 
0.5 

this line, IAlmax~1 1Y=3.0 
v=( 13+2) /5 

x v/lJ.=5/3 

Above this broken line an eigenvalue with 

index 2 exists. 

n 6t-I/8 

o 

2 

v/lJ.=c6x/a 4 

o 1.0 2.0 

Fig.l. Stability diagram for coupled sound and 
heat flow for y=3, between ,,=c6t/6x and 
ljJ=c6x/a. The stability condition is satis':" 6 
fied below the curve. Two lower c~rves . ~~--~------------------------~--~ 

3.0 

2.0 -

approach still more as y tends to 1. 

y=3. 0 
\)=(13+2)/5 
11=3,,/5 
n=5 

1.0""---"""1. 

o 
5 10 

-1.0 .. 

Fig.3. Calculated profile after 5 cycles, 
in a run in which the modified von 
Neumann condition was violated, although 
c6t/6x<I(From Richtmyer'arld Morton[8]). 
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6t=1/32 

n 

q-----------------~---

16 

Fig.2. Profiles of the solution of wave 
equation in example 1, in §4, for 
,,=6t/6x=I(By H.Takami) 



Fig.4 a) 
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Fig.4. Evolution of the weak shock wave coupled with heat flow. Governing 

equations are the same as those in Richtmyer and Morton's book [8] , where 

~/v=0.04938l and v=0.975933. There is a double root, which is -0.953112 of 

index 2 at k6x=n. No absolute eigenvalue is greater than 1. 

a) The shock wave structure is completely hidden behind the error in the 

initial values from the second time step. 

b) On the other hand, the initial values are smoothed. The shock wave 

structure can be observed in this figure. 
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for Volterra integro-differential equations 
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~. Introduction 

In this paper we consider a posteriori error estimation of 

the approximate solution of the following nonlinear Volterra 

integro-differential equation 

(1.1) dx 1 dt = f(t,x) + g(t,s,x(s))ds, 
o 

(1.2) O..{t..{T<+co. 

Recently, for Volterra integro-differential equations as 

well as in the case of ordinary differentia! equations, various 

approximate methods, for example, the Chebyshev series m'ethod 

(1], the Linear multistep method [2J, the Euler method [3J,' 

the Runge-Kutta method [4J and the Spline function method [5J, 

have been reported. In them, though a priori error estimates 

to approximate solutions have been given, it seems that a pos­

teriori error estimates have no~ been given to approximate 

solutions. 

In the sequel, re~ardine equations (1.1)-(1.2) as an operat­

or equation and applying the theorem on the Newton method for 

functional equations by Urabe [6J, wetprove the existence of 

3,1 



an exact solution from an approximate solution and obtain a 

posteriori error estimate to the approximate solution. In this 

case this error bound is calculated by the uniform norm, and 

so larger than the exact one for each point. In the main 

Theorem 2 we obtain a pointwise error estimate under the weaker 

conditions than those in Theorem 1. To obtain the first approxi-

mate solution~ we use the Picard iteration method discussed by 

Wolfe r 11. The merit of using the Chebyshev series is that its 

derivative or inte~ral can be computed easily and the residual 

also can be easily. Thou~h the Wolfe's method is essentially 

the application of the method of Clenshaw and Norton [7J, the 

proper error estimate of the computational Chebyshev series to 

an exact solution was not discussed. On the other hand, in 

section 3 our main theorem guarantees the possibility of gett­

ing the proper error boun to an approximate solution obtained 

by Wolfe's method. In general, the speed of the convergence by 

the Picard iteration method is easier than the Newton method 

to get the computational solution. In our case, if we could 

not get the adjoint kernel X(t,s) explicitly, it is not easy 

to do the Newton iteration, but it is possible to .do the theo­

retical Newton method and 80 get the better estimates than 

that of the Picard iteration method, provided that a starting 

approximate solution were obtained by the Chebyshev series 

iterated appropriately. 
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2. Preliminaries. 

In this section we consider the nonlinear Volterra integro-

differential system (1.1)-(1.2) under the following conditions: 

(H) 

x(t): an unknown n-dimensional vector-valued function, 

f(t,x): a given n-dimensional continuous vector-valued 

function on I and continuously differentiable 

in xED, 

g(t,s,x): a given n-dimensional vector-valued function, 

which is continuous on (t,s) (o~ s ~ t ~ T), 

continuously differentiable with respect to x in 

D and g(t,s,x) = ° (if t < s), 

where D is a given domain of n-dimensional 

Euclidean space Rn and I = [O,TJ. 

Moreover we suppose 

Lipschitz continuous in xED. 

Lete( I ;.D) be a space of all continuous bounded functions 

from I into D with the norm IIx!, = ~~..plx(t)1 for any x E: e(IiD), 
..-~! 1 

where I-I denotes the Euclidean norm. Let e (I;D) be a space 

of all continuously differentiable bounded functions from I 

into D. Furthermore we define a product space V = e( I ;Rn) X Rn. 

For any y = [v(t),} ] E V, if we define the norm lIyll" = IIvn + I~I' 

then it can be easily shown that V is a Banach space. 
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Definition. For any x( t) E: 1 C CI;D), we define the' residual 

operator pcx): 
t 

(2.2) f(x) (t) 
,dx 

- f(t,x(t)) -1 g(t,s,x(s))ds. = dt 
0 

Under the above preparations, we consider the following operator 

]' ( x) ( t ) = [P( x) ( t) , x ( 0 ) - 7l . 

We also consider a linear operator from C1 (I;D) into V such 

that 

(2.3) 
t 

L(x)(t) = [~~ - A(i;)x(t) -1 a(t,s)x(s)ds, x(O)], 
o 

where A(t) is an nx n continuous matrix on I and aCt,s) an 

n)(n continuous matrix on (t,s) (O.{. S.s.. t ~ 'r), aCt,s) 

:: 0 if t < s., 

Lemma 1. The resolvent solution X(t,s), which is the unique 

solution of the equation 

t aX(t ,~ 
dS = -X(t,s)A(s) - J X(t,u)a(u,s)du, 

s 

X(t,t) = I, o .s.. s ~ t .s.. '11, 

is differentiable with respect to t and satisfies the equation 

t 
- ACt)X(t,s) + L a(t,u)X(u,s)du, o .s.. s ~ t,~ '1'. 
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And there exists an inverse operator L- l for (2.3) such that 

L-l(y)(t) = X(t,O)~ + 1 X(t,s)v(s)ds, 
o 

y = [v, ~J. 

Remark 1. It is well-known that if A(t) and aCt,s) are continu­

ous functions, the adjoint kernel X(t.s) exists ([8]). 

'rhus under the sui table conditions we can establish the modi fi­

ed Newton method for the operator equation F(x) = 0 as follows: 

(n = 0,1,2, ••• ). 

Applying the theorem on the Newton method for the functional 

equation by Urabe [6J to the system (1.1)-(1.2), we have a 

following existence theorem. 

Theorem 1. Assume that the system (1.1)-(1.2) has an approxi­

mate solution x = x( t) E D, x( 0) = '1, for which there are a 

positive number & and a nonnegative number ~~l such that 

( i ) DO" = t'iI {x /1 x - x ( t) I ~ 0 } CD, 
t 

( i i ) ~~ f { I d ( t , x ( t » - ,A ( t) I + £ I.~( t , s, x ( s» - a ( t , s) Ids} ~ * 
for any x E C(I;Do)' 

(iii) Mr < cf 
1 -, 
_ - K 

where r 2 0 and M > 0 are constants such that 

and 
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Then the system (1.1)-(1.2) has one and only one solution 

x = x(t) E Cl(I;Do) on I, and for this solution we have 

Mr Ilx - x II~---
1 - K 

3. A pointwise error estimation 

In Theorem 1 assumptions (2.1) and o~ X < 1 are rather strong. 

In this section we obtain a theorem relating to the poftEwise 

error estimation under the weaker assumptions than those in 

Theorem 1. In order to prove Theorem 2, we use the following 

lemma which could be easily proved. 

Lemma 2. For a given nonnegative continuous function u(t), 

t ~ I, and a constant c 20, we define a sequence {rn(t;c)} 

(n = 0,1,2, ••• ) as follows: 

r +1(t,s) = cl u(t-s)r (s;c)ds. nOn 

Then lim ~ r (t; c) = R( t; c) exists uniformly on I, ·and N~Q) .ft=D n 

R(t;c) is nonnegative, nondecreaing, continuous and satisfies 

the following linear integral equation: 

t 
R(t;c) = rO(t;c) + c h u(t-s)H(s;c)ds, t 6: I. 

~ ro(t;c) 
Furthermore if c L u(s)ds < 1, then we have R(t;c)~ 

() 1. - c foU(S)dS· 

By using Lemmas 1 and 2, we get the following th~orpm. 
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Theorem 2. Under the hypothesis (H) we consider the Volterra 

integro-differentia1 system (1.1)-(1.2). Suppose that the system 

(1.1)-(1.2) has an approximate solution x = x(t) E D, x(O) = 1, 

for which there are positive numbers 0 and M, and a nonnegative 

number K such that 

(i) Do = V \ xlix - x( t) I s.. 6 } c. D, 
tEl 

(ii) sup {I¢(t,x(t» - ACt) I + llf<t,s,x(s» - aCt,s) Ids}~ )<. 
tE: I 0 M 

(iii) 

(iv) 

for any x ~ C(IjDo>, 

IX(t,s)1 ~ u(t-s) 

"P( x)" ~ r. 

'r 
and £ u(s)ds ~ M, 

. Then if rR(Tj~) < r, the system (1.1)-(1.2) has one and 
M - a 

only one solution x = x(t) ~ C1 (I;Do), and for this solution we 

have 

and 

Ix(t) - x(t)/ ~ rH(tjX), 
M 

/P(xn)(t) I ~ r-f rn_1 (t;-f") 

p< xn) (t) = 0 

tEl, 

if ~~ 0 (n = 0,1,2, ..• ), 

if)( = 0 (n. = 1,2, ••• ), 

11 
where r -1 ( t; ~ ) = V if)( I. 0 and {xnl (n = 0,1,2, ••• ) is 

defined in (2.5) with Xo = x. 

Proof. At first from the definition of {xn } we have 

t 
= -{ X(t,s)f(xn)(s)ds (n = 0,1, ••• ). 

o 

39 



The proof for K = 0 is essentially the same in the case of 

K I o. So we prove the theorem only for K ~ O. Suppose that 

K I O. Then we obtain by mathematical induction· 

(3.2) 

and 

In fact the results are obvious for n = O. Assume that x1 ,x2 

, ••• ,xN are all in D6 and (3.2), (3.3) hold for n = 0,1,2, •• 

• ,N. From (3.3) it follows that IxN+1 (t) - xO(t) I ~ &, that 

is, xN+1 (t) ~ Dd' t ~ I. Then the definition of f(x), Lemma 1, 

(3.1), the induction hypothsis and the mean value theorem 

imply that 

I dXN+1 t 
IP(xN+1)(t) I = dt - f(t,xN+1 (t)) - £ g(t,s,xN+1 (s))ds I 

• I~~- P(xN)(t) - £oX~i'S2p<XN)(S)dS - f(t'XN+1(t» 

-£ g(t,s,xN+1(s»ds I 

1 t 
~ 1 {/A(t) - 0(t,x,/t) + 8(xN+1 Ct) - xN(t)) / + fla(t,s) 

o 0 

-l:"Ct,s,xN(s) +8(xN+1 (s) - xN(s))/ds}d8 rrN(t;-1t) 
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and 

~ r..l:L } u ( t - s) rN ( s ; $.. ) d s 
Iv! -b M 

= rrN + 1 ( t ; + ) · 
Therefore (3.2) and (3.3) are proved for all n. As the remainders 

of the proof are similar to those in Theorem 1 in [6J, they are 

omitted here. 

Corollary 2.1. Under the same assumptions as in Theorem 2, we 

have 

I xn ( t) - x ( t) I ~ IP( x )11 R ( t ; X) 
n M 

for K ¢ ° and n = 0,1,2, •••• 

The proof of Corollary 2.1 follows ~ediately from the proof 

of Theorem 2 if we regard f(xn ) as r in fheorem 2. 

Corollary 2.2. In Theorem 2, if K satisfies the inequalitY~<l, 

we have 
Mr 

I rR(t;..1S-) Is-..---
M 1 - K 

Mr 
IIx - xll~---

1 - k. 

':('hie is just the result of Theorem 1. 'rhe proof of Corollary2.2 
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follows from Lemma 2 and Theorem 2. 

Corollary 2.3. Under the same assumptions as in Corollary 2.2, 

we have 

for n = 0,1,2, •••• 

The proof of Corollary 2.3 follows easily from our hypothesis 

and the definition of r • n 

Corollary 2.4. If the adjoint kernel X(t,s) satisfies the 

inequality 

I X ( t , s) I .$. c e xp ( b ( t - s ) ) , t € I, 

where band c are some constants, then we obtain 

R ( t ., ..k...)' = { 
f'i 

c (exp(b+~c)t) - 1) if b+~cIO, 
b + K c M fv1 

fVI 

ct if b+~c = o. 
M 

If we solve the integral equation 

R(t) 
t t 

= (c£eXP(bs)dS) + CK I exp(b(t-s))R(s)ds , 
M 0 

then we find the result of Corollary 2.4. 
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4. Computational procedure and numerical examples 

In his paper [1], Wolfe established the Picard iteration 

method with a Chebyshev interpolation series to compute 

numerically the solutions of (1.1)-(1.2). In this paper we 

used his procedure to provide a first approximate solution 

in the following examples. Though, in general, it is difficult 

to find the residual for x exactly, it is easy to compute it 

-approximately, provided that a first approximate solution x 

wer~ obtained by Wolfe's procedure. In fact, from the defini­

tion of the residual function we find P(x)(t) so that neglect-

ing truncation errors, 

P(x)(t) 
dYN 

= dt 
dYN+1 
dt 

dYN = t={, 
where -dt n=O 

AN'jTj(t) is the N-times computationally 

iterated function by means of -Wolfe's procedure and x = YN. 

Wolfe's procedure is easily extended to solve the adjoint 

kernel X(t,s) numerically with a double Chebyshev representa­

tion. Thus the Newton iteration (3.1) could be carried out 

computationally. This procedure has not been executed in this 

paper because it is primarily our purpose to obtain an a 

posteriori error estimate for Volterra integro-differential 

equations. 

We now give two examples. Especially the first has been 

used oy many authors 19J. 
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Example 1. 

~~ ~ 1 + 2t - x(t) + £t(1+2t)eS (t-S)X(S)dS, 

x(o) == 1, 0 So. t ~. 1. 

Chebyshev coefficients of x 

aO 3.118449253672 as 0.000006752824 

a1 0.800895417852 a9 0.000000S46036 

a2 0.287218928325 a10 0.000000105245 

a 3 0.056192726040 a11 0.000000011974 

a4 0.012351784489 a12 0.000000001343 

a 5 0.002004280830 a13 0.000000000141 

a6 0.000338715218 a14 0.000000000015 

a7 0.000047631421 a15 0.000000000001 

a16 0.000000000000 

Starting order of the Chebyshev series : 4 • 

The number of the Picard iteration : 12 • 

(1) Error estimates by Theorem 1: 

(2) 

-11 - /\ -8 {Ii == 1 78, r = 5 • 2 x 1 0 , K = 0, II x - x /I So 1.068 x 1 0 • 

Error estimates by Theorem 2: 

Ix(t) - 2(t) I ~ 5t O.?r(e - 1), 0.(t..{1, 

xn(t) = x(t) = exp(t2 ) (n = 1,2, ••• ). 

cf. x(1) = 2.718281828590 , 

~(1) == 2.718281828459 , 

(Theorem 2) Ix(1) - 2(1)1 '1.540 x 10-9 • 
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Example 2. 
dx 
dt 

x(O) = 0.02, 0 ~ t ~ 2. 

Chebyshev coefficients of x 
aO 0.1360872 a4- 0.0002507 

a1 0.0602175 a 5 0.0000205 

a2 0.014-1604- a6 0.00000.10 

a 3 0.0022177 a i 0.0 (7 ~ i < .29) 

Starting order of the Chebyshev series 10. 

The number of iterations : 19 • 

(1) Error estimates by Theorem 1: 
-6 -4 M = 15.5731, r = 1.660><10 ", 'K = 3.483X10 , 

IIx - )illS. 2.5861 x10-5• 

(2) Error estimates by Theorem 2: 

M = 7.032, r = 1.660 x 10-6 , r( = 7.098 x' 10-5 , 

Ix(t) - ~(t)1 ~ 1.55x10-6(e1.0725t_ 1), O~ t~ 2. 

cf. Ix(2) - :i(2) I ~ 1.17 x 10-5• 

All the computations were carried out on the digital computer 

IB}'I 370 NODEL/135 at the Computation Center, Waseda University. 

'llhe authors would like to express their gratitude to Professor 

s. Sugiyama and Professor K. Nakashima. for their valuable 

advices and constant encouragemerit. 
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On ~he Existence of an Approximate Solution 

in Chebyshev Series of a Nonlinear Integral 

Equation of Fredholm Type 

Mitsunobu Kurihara 

(Received January 10, 1976) 

Abstract 

In the present paper we study a nonlinear integral equation 

of Fredholm type and prove the existence and the uniqueness of 

an approximate solution in the form of finite Chebyshev series 

accurately as it is desired for an isolated solution of the 

integral equation. We use Galerkin's procedure based on Chebyshev 

polynomials and determine the coefficients of the series by toe 

method of Newton-Raphson's to obtain the desired approximate 

solution. The proof we give is analoguous to that by M. Urabe [3]. 

O. Introduction 

M. Urabe [3J studied multi-point bo~ndary value problems for 

nonlinear ordinary differential equations and proved three basic 

theorems (Theorem 1, Theorem 2 and Theorem 3) on approximate 
, , 

solutions in Chebyshev series of the boundary value problems. He 

used Galerkin's procedure based on Chebyshev polynomials and 

determined the coefficients of the finite Chebyshev series bv the 

method of Newton-Raphson's to obtain the approximate solution. 
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Theorem 1 says that fo~ any isolated solution there exists an 

approximate solution ~ccurately as it -is desired by Qomputing 

finite Chebyshev polynomial seri~s. TheorSm 2 says that the 

obtained Chebyshev approximation corresponds one to one to the 

isolated solution. Theorem 3, which plays an important role in 

practical applications, says that one can always assure the 

existence of an exact isolated solution by checking several 

conditions on the obtained Chebyshev approximation and further 

it gives a method to obtain an·-error bound of the obtained 

approximate solution. 

It is expected that' the analbgllous. conclusion· will be 

obtained for nonlinea~ integral equations of Fredholm type. In 

fact, ShimasakiM. and T~ Kl~ono [IJ obtained the numerical 

solutions of the nonlinear integral equations using the method 

of Chebyshev series analoguous to that by M. Urabe [3J. They 

gave some numerical examples and stated a fundamental theorem 

analoguous to Theorem 3 to obtain the error bounds of these 

numerical solutions. 

In the present paper we prove two theorems analoguous to 

Theorem 1 and Theorem 2 by M. Urabe [3J on the existence and the 

uniqueness of an approximate solution in the form of finite 

Chebyshev polynomial series for an isolated solution. We consider 

a nonlinear integral equation of Fredholm type of the form: 

(0. 1) 
1 

uCt)=f(t)+J_IK(t,s,U(S»dS 

on the interval [-I,lJ. Denote by J the closed interval [-l,l}. 
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Let D be an open interval. Here we assume on the equation (0. 1) 

the conditions that f(t) is continuously differentiable function 

of t on the interval J and that K(t,s,u) is continuous function 

of t, sand u on the region JXJXD and also twice continuously 

differentiable function of the arguments t and u on the same 

region. 

In order to obtain an approximate solution of the equation 

(0. 1), we take the finite Chebyshev polynomial series with 

unknown coefficients a (n=O,I, ~-... ,m) such that 
n 

m 
(0. 2) u (t)= rea T (tj. 

m n=O n n n 

Here we denote by Tn(t) the Chebyshev polynomial of degree n 

defined in the following form: 

(0. 3) 

and also 

( 0 • 4) 

It \'1ill 

-1 Tn(t)=cos(ncos t) for tEJ and n=O,l, 

denote by e the constant number of the form: n 

eO=l, e =/2 for n=1,2,·····. n 

be reasonable to determine these m+l coefficients 

(n=O,l,····· ,m) so that 

(0. 5) u (t)=(P f)(t)+P JI K(t,s,u (s»ds 
m m m -1 m 

a n 

may hold. Here P is the operator which expresses the truncation m 

of the Chebyshev series of the operand discarding the terms of 

the order higher than m. In what follows, the finite Chebyshev 

series u (t) satisfying the equation (0. 5) will be called m 

Chebyshev approximation of order m. 
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According to the definition by Shimasaki M. and T. Kiyono 

[lJ, we call u=O(t) isolated solution of the equation (0. 1) when 

it is a solution of the equation (0. 1) the first variational 

equation of which 

(0. 6) V(t)-J~l~~(t,s,n(S))V(S)dS=O 

has no continuous solution except v(t)=O. The nomenclature comes 

from the fact that for any isolated solution u=O(t) of the 

equation (0. 1) there is no other solution of the equation (0. 1) 

in a sufficiently small neighborhood of U=Q(t). (see [lJ) .. 

The conclusion of the present paper is the following two 

theorems. 

Theorem 1. If the equation (0. 1) has an isolated 

solution u=O(t) lying in an open interval D for any tEJ, then 

for sufficiently large mO there exists a Chebyshev approximation 

u=um(t) of any order m>mO such that the sequence um(t) converges 

uniformly to the solution O(t) on the interval J. 

Theorem 2. The Chebyshev approximation u=u (t) stated 
m 

in Theorem 1 is determined uniquely in a sufficiently small 

neighborhood of u=O(t) provided the order m of the Chebyshev 

approximation u=u (t) is ,sufficiently high. 
m 

In order to prove Theorem 1, we use the following lemma proved 

by M. Urabe based on the Newton-Raphson's procedure to determine 

the coefficients of desired Chebyshev approximation. 
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Lemma. (M.Urabe [2] and [3]) Let 

(0. 7) F(a)=O 

be a given real system of equations, where a and F{a) are vectors 

of the same dimension and F(a) is a continuously differentiable 

function of a defined in some region n of the a-space. Assume that 

(0. 7) has an approximate solution a=B for which the determinant 

of the Jacobian matrix J(a) of F(a) with respect to a does not 

vanish and that there are positive constant ~ and a nonnegative 

constant K<l such that 

(1) n8={aIRa-an<8}Cn 

(2) nJ(a)-J(a)U~K/M' 

(3) .M'r/(1-K)<8, 

where rand M' are numbers such that 

IIF(B)I\ ~r and 

Then the system (0. 7) has one and only one solution a=n in no 

and for a=nit holds that 

detJ(n)~O and 

Here we denote by the symbol" II Euclidean norms for vectors and 

matrices. 
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1. Some Properties of Chebyshev Series 

Denote by C(J) the family of all continuous functions of t 

on the interval J. For any function f=f(t)€C(J) we use the two 

kinds of 

(1. 1) 

and 

(1. 2) 

norms \I fll nand 1\ fllq' 

\\f\\ =sup! f(t)! 
n tEJ 

which are defined as follows: . 

When we use the notations (0. 3) and (0. 4), it is known 

that any function f=f(t)EC(J) is expanded in Chebyshev series of 

the form: 

(1. 3) 

where 

00 

f(t)~ Lea T (t), 
n=O n n n 

a ==€'lTl fl f(t)T (t)(1_t 2 )-1/2dt . 
n n -1 n 

Applying Parseval's equality to the expansion (1. 3) and using 

the definition (1. 2), we have 

(1. 4) 

In particular for finite Chebyshev series of the form: 

m 
f (t)= Lea T (t), 
m n=O n n n 

the equality (1. 4) implies that 

(1. 5) 

where a is the vector a=(a ,a , ••••• ,a ). o 1 m 
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Moreover using the equality (1. 5) and Schwarz's inequality for 

the same finite Chebyshev series, we have 

(1. 6) 

By the definition of the operator Pm~C(J)+C(J) for any 

f=f(t)EC(J) we have 

m 
(P f)(t)= Lea T (t). 

m n=O n n n 

Consequently it follows that 

00 

«I-P )f)(t)~ Lea T (t), 
m n=m+l n n n 

where I denotes the identity operator. If f=f(t) is continuously 

differentiable function of t on the interval J, it is proved that 

(1. 7) ~ ( I - P ) fl\ ~ a ( m) \I ( I - P 1 ) f \I ~ a ( m ) \1 f U m n- m- q- q 

and 

(1. 8) 

for m=O,l,·····, where P_l=O, f=df/dt and the functions a(m) and 

al(m) are monotone deceasing of m satisfying respectively 

(1. 9) and 

These properties of Chebyshev series was proved in detail in the 

paper by M. Urabe [3]. 
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2. Fundamental Inequalities 

If u=O(t) is an isolated solution of the equation (0. 1) 

lying in the interval D for any tEJ, there exists a positive 

number 0 such that 

Do~{ul lu~O(t)l<o for some tEJ}CD. 

Denote that 0 =P O. It follows from the inequalities (1. 7) and m m 
(1. 8) that 

(2. 1) 

and 

(2. 2) 

where 

Hence from the inequalities (1. 9) and (2. 1) there exists a 

number ml sufficiently large such that for any m>m =m 
for any tEJ. 

The coefficients a=(aO,a1,·····,am) of our desired Chebyshev 

approximation of order m 

m 
u (t)= Lea T (t) 

m n=O n n n . 

will be determined from the equation (0. 5), that is equivalent 

to the system of nonlinear algebraic equations 

(2. 3) F(m)(a)=(Fo(a),Fl(a),~ •••• ,Fm(a»=o, 

where 

(2. 4) JI m 
u (t)-(P f)(t)-P K(t,s,u (s»ds= L e F (a)Tn(t). 

m m m 1 m -0 n n - n-
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The equation (2. 3) is called determining equation of Chebyshev 

approximation. 

In order to determine a domain where the function F(m)(a) is 

well defined, we take a numbe,r m2 >m1 such that for any m~m2 

since 

lu-a(t)I<lu-am(t)I+lam(t)-a(t)I<~-Mla(m)+"am-a"n 

for any U€Vm~ Let us put that 

ex> 

a(t)= Lea T (t) 
n=O n n n 

and a=(~ ,a ,·····,a ) .01 m 

and define the domain of the form 

n ={a Il\a-all~ 1 (~-Mla(m»}. 
m {2m+l 

For any a=(a a ••••• a )En 
0'1' 'm m' 

we obtain 

m 
u (t)= Lea T (t)E:V CD 

m n=O n n n m 
for any te:J 

since 

from the inequality (1. 6). Therefore it is concluded that the 

function F(m)(a) is defiried on the domain n and continuously 
m 

differentiable function of a on the same domain from the definition 

(2. 4). 

Let Jm(a) be the Jacobian matrix of the function F(m)(a). 

To investigate the properties of the matrix Jm(a), let us consider 
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a linear equation of the form 

(2. 5) 

wh~r'e 

If we put 

a=(a a ••••• a )eO 
0' l' 'm m' 

m 
um(t)= Lea T (t), 

n=O n n n 

m 
v(t)= Lex T (t) 

n=O n n n 

and 

m 
and w(t)= Ley T (t), 

n=O n n n 

then by the definition of the Jacobian matrix J (a) we have 
m 

(2. 6) Jl aK 
v(t)-P ~(t,s,u (s»v(s)ds=w(t) 

. m _loU m 

corresponding to the linear equation (2. 5). 

Substituting Qm(t) for um(t), we rewrite the equation (2. 6) 

in the form 

(2. 7) 

where 

V(t)-J~l~(t,S,Q(.»V(S)dS-W(t)+R(t), 

Jl'aK 
R(t)=-(I-P) ~(t,s,Q(s»v(s)ds 

m _loU 

Jl aK aK 
-P [~(t,s,Q(s»-~(t,s,Q (s»]v(s)ds. 

m _loU aU m 

It is easy to prove from the inequality (1. 8) and the Parseval's 

equality (1. 4) that 

(2. 8) 
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where 

and 

+\1 Cl [;~(t ,s ,O( s) )-;~(t, s ,Om(s)) ]v( S)dSll q 

<M2o 1 (m)1\ V\\q +M3 \\a-am\\ qll V\\q~ (M2 +M3Ml ) 0 1 (m)1I V\\q , 

From the definition of the isolated solution u=a(t) and well-

known theory for linear integral equations of Fredholm type it 

follows that there exists a constant number M such that 

for the equation (2. 7). (see [lJ or [4J) Therefore from the 

inequality (2. 8) we have 

If we take m3~m2 sufficiently large, we obtain for any ~3 

By the equality (1. 5) this is equivalent to the inequality 

(2 •. 9) 

It readily follows from the equation (2. 5) that for any m~3 

(2.10) 

and 

(2.11) 

detJ UO;lO m 
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where M' is a constant number. In fact, put n=O in (2. 5), then 

by (2. 9) we have ~=O, which implies (2.10). By (2.10), from (2. 5) 

we have 

Then by (2. 9) we have (2.11). This inequality (2.11) plays an 

important role in ~he proof of Theorem 1. 

Let 

~'=(a' a' ••••• a') 0' l' , m and """=(a" a" ••••• a") .... 0' l' , m 

be arbitrary vectors belonging to the domain Q . Then both 
m 

m m 
u'(t)= I e a'T (t) 

m n=O n n n 
and u"(t)= I e a"T (t) 

m n=O n n n 

lie in VmCD for any t&J. For any vector ;=(xO,x1 '·····,xm) let us 

put 

(2.12) 

where 

J (~');=n' m 
and .J (~");=n", m 

and n"=(y" y" ••••• y") 0' l' , m • 

Corresponding to the equations (2.12), we have 

(2.13) 

and 

where 

v(t)-P Jl ~K(t,s,u'(s»v(s)ds=W'(t) 
m _lOU m 

fl aK 
v(t)-P -;;;-(t,s,u"(s»v(s)ds=w"(t), 

m _lOU m 

m 
v(t)= Lex T (t), 

n=O n n n 
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m 
w'(t)= L e y'T (t) 

n=O n n n 
and 

By the equation (2.13) and (2.14) we have 

m 
w"(t)= L e y"T (t). 

n=O n n n 

w'(t)-w"(t)=-P Jl [~K(t,s,u'(s»_~K(t,s,u"(s»Jv(S)dS. 
m -1 aU m aU m , 

Then it is easy to prove from the Parseval's equality (1. 4) and 

Schwarz's inequality that 

nw'-w"1I <I\Jl [~K(t,s,u'(s»-~K(t,s,u"(s»Jv(s)dsllq 
q= -1 aU m aU m 

On the other hand, it follows from the equality (1. 5) and the 

equa~ions (2.12) that 

and 

Hence we have 

which implies 

(2.15) 

for all vectors a' and a" belonging to the domain n . This m 

inequality (2.15) also plays an important role in the proof of 

Theorem 1. 
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3. Proof of Theorem 1 

Let u=O(t) be an isolated solution of the equation (0. 1) 

lying in the interval D for any tEJ. Denote that 0 =P 11 and put m m 

m 
o (t)= r e ~ T (t) 

rn. n=O n n n 
and ~=(A A ••••• A ) t\ a O,a1 , ,am. 

It is concluded from the previous section that there exists a 

number m3 such that for any m~m3 the function F(m)(a) defined in 

(2. 3) and (2. 4) is continuously differentiable of a on the 

domain stm and the Jacobian matrix J (a) of the function F(m)(a) 
m 

has the inverse J-l(a) 
m at a=& satisfying the inequality (2.11) 

and satisfies (2.15). 

Now we will apply the Lemma in the section 0 to the equation 

(2. 3), the roots of which are the coefficients of our desired 

Chebyshev approximation. For any m~m3 let us put 

am(t)-(Pmf)(t)-PmJ~lK(t,s,am(S))dS=Rm(t). 

This is rewritten in the form 

R (t)=P Jl [K(t,s,O(s»-K(t,s,O (s»]ds 
m m -1 m 

and hence from the Parseval's equality (1. 4) and Schwarz's 

inequality it follows that 

where 

II Rm II q < IIJ 1 [ K ( t , s , 0 ( s ) ) - K ( t , s , Om ( s ) ) ] d s It q 
-1 

<M4 11 0m- O IIq <M4 Ml 0 1 (m), 
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If we put 

FCm)C&)=p, 

then we have from the equality (1. 5) 

(3. 1) 

-1 Since 0l(m)=(m+l) ,the inequality (3. 1) expresses that a=& is 

an approximate solution of the determining equation (2. 3) for 

any sufficiently large m. 

In order to check the conditions (1), (2) and (3) in Lemma 

in the section 0, we take an arbitrary nOnnegative number K<l and 

put 

There exists a number m4>m3 so that 

[M'M1M4/(1-K)]ol(m)<ol//2m+l 

/-- -1/2 may hold for any m>m4 since 2m+lo l (m)=O(m ) as m~oo. If we 

take om such that 

(3. 2) 

(3. 3) QO :;:{aIJla-&I\<omKQ ",. 
m 

In fact, for any a~Qo and any m~m4 
m 

lIa-&\I<om~Ol//2m+l 

~[o-Mlo(m3)J/12m+l~[o-Mlo(m)J//2m+l, 

which implies a~Qm. Moreover for any aEQ o and any m~m4 we have 
m 

(3. 4) 
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Finally by the inequalities (3. 1) and (3. 2) we have 

(3. 5) M'Hp"<[M'M M /(l-K)]o (m)<~. 
l-K = 1 4 1 = m 

The expressions (3. 3), (3. 4) and (3. 5) show that the conditions 

(1), (2) and (3) are fulfilled. 

Thus by the Lemma in the section 0 we see that the determining 

equation (2. 3) has one and only one solution a=a in the domain 

no satisfying 
m 

and 

(3. 6) 

If we put 

a=(a a ..... a \ 
0' l' , m' 

m 
and u (t)= Lea T (t), 

m n=O n n n 

then um(t) is a Chebyshev approximation and satisfies for m~m4 

I\u -ol\ <llu -a 1\ +Ilo -all <y'2m+llla-&II+Ml o (m) m n= m m n m n= 

<[MIMI M4/(1-K)]y'2m+lo l (m)+Ml o(m) 

from the inequalities (1. 6) and (3. 6). The functions y'2m+lo l (m) 

and oem) are equal to O(ro- l / 2 ) as m~oo. This proves the existence 

of a Chebyshev approximation u (t) being convergent uniformly to m 

the solution o(t) as m~oo. 
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4. Proof of Theorem 2 

Let u=u(t) be an isolated solution of the equation (0. 1). 

For any positive number E we choose a number mO such that for any 

m>mO,ol(m)=l/(m+l)<E and suppose that for any m>mO there are two 

Chebyshev approximations 

(4. 1) u=u (t) 
m 

and u=u' (t) 
m 

satisfying 

(4. 2) and 

Hence the two Chebyshev approximations (4. 1) lie in the domain 

DE={U\ \u-U(t)\<E for some t~J}CD 

for any tEJ. Let us put v (t)=u (t)-u' (t). By the de.finition of m m m 
the Chebyshev approximations (4. 1) we have 

(4. 3) vm(t)=P Jl [K(t,s,u (s»-K(t,s,u'(s»]ds 
. m -1 m m 

J
l ClK = ~(t,s,u(s»v (s)ds+R(t), 
_laU m 

where 

J
l Jl ClK 8 ClK R(t)=P [~(t,s,u (s»-~(t,s,u(s»]v (s)d8ds 

m -1 0 aU m aU m 

-(I-P )Jl ~K(t,s,u(s»v (s)ds 
m _l.aU m 

and 

U8 (t)=u'(t)+8[U (t)-u'(t)]. m m m m 

Noting the fact that ue(t)ED for any 8E[0,1] and any tEJ, it is m E 

easy to see from the Parseval's equality (1. 4) and Schwarz's 
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inequality that 

where M2 and M3 are the constant numbers defined in the section 2. 

Using the theory for linear integral equations of Fredholm type 

for the equation (4. 3) and the definition of the isolated solution 

u=Q(t), we obtain 

where M is the constant number used in the section 2. Since E is 

arbitrary, the inequality above implies that 

From the Parseval's equality (1. 5) for the finite Chebyshev series 

vm(t) it follows that 

v (t)=O for any tfJ, m 

that is, 

u (t) =u' (t) m m for any tEJ. 

This proves the uniqueness of Chebyshev approximations and hence 

completes the proof of Theorem 2. 
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