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1. Introduction

The stability condition for the scheme of difference equations
with constant coefficients with periodic boundary condition is
proved by P.D. Lax and R.D. Richtmyer(5), to be équivalent to the
uniform boundedness of the norm (see §2) IGn(At,k)l in D={0<At<rT,
1§n§T/At,k}. Here k=(k1,---,kd), k1=2"r1/Li’ ri=0,t1,t2,“', d is
the number of spatial variables and Li are the periods. G(At,k)
is the amplification matrix introduced by the Fourier transformation

of the difference equation, and its dimension m is equal to the



number of dependent variables.

J. von Neumann's necessary condition on the eigenvalues A
of G is |A|S1+KAt, where K is a constant in D.

T. Kato (3) showed that, roughly speaking, if the larger
eigenvalues of G have simple elementary divisors and if either
(1) the eigenvalues are separated from each other by a fixed amount,
or (2) the associated normalized eigenvectors have the Gram deter-
minant (see §2) larger than a fixed number, then the von Neumann
condition is sufficient.

H.O0. Kreiss [4] obtained four necessary and sufficient con-
ditions, but his conditions are often difficult to apply to the
practical matrix calculatién[

M.L. Buchanan [1] found the necessary and sufficient con-
dition for the upper triangular matrix form, to which G(At,k) can
be transformed by a unitary matrix into

(A, (0t,k) a,,(At,k)----a, m(At,k)T

0 A, (At,k)----- a, m(At,k)

(1.1)  AGGK) =] e

with the diagonal elements nested with a nesting constant R(i.e.

Iki-kjléRIAr-Asl for all ranges with 13riiljisim).
Her condition for the stability is that there exist constants
K and L such that in D

I, ] S 1 + Kat, 15ism,
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and*

laijl < L, 18i<jsm,

max (At/T, 1—|ljlylli‘xj|)

(1.2)

The lemma (1) of T.Kato is deduced from her result, but the
lemma " (2) is not. |

The equivalence theorem of P.D. Lax and R.D Richtmyer is for
the 1imit At-0. The actual calculation is practised for a finite
At. Richtmyer and Morton showed the examples in which the stability
condition is satisfied and the difference calculation runs practi-
cally unstable even in early time steps. Hence they imposed a
severer condition on the maximum eigenvalue || in D for a finite

max
At for practical stability as a modified von Neumann condition ([8].

In this paper we take the eigenspace into consideration. In
§2 we show that if |G| is bounded and its spectral sets are separat-
ed each other by a fixed amount, then the Gram determinant of the
matrix of the normalized basis of the subspaces for these sets can
be made larger than a positive constant. Hence Kato's condition
(2) is deduced from his condition (1). And Buchanan's criterion
(1.2) is necessary only for the set of such eigenvalues Ai(At,k(At))
in D, that converge to a multiple eigenvalue for k=k(At) ih the
limit At~0Q.

In §3 we show that occasionally the norm increases with n for

some eigenvalues A, i.e.lGn|~nhlA|n—l|G|, where h21. This would

* Her result is misquoted by Richtmyer and Morton [7] and V.

Thomée [9].



cause the practical instability in the early time steps, rather
than |G"|~|A|" _ , in the case RY NS

If |A|<1, it decreases to 0 for sufficiently large n, then the
practical instability will disappear, unless there is a large
eigenvalue |A|max>1 in D.

In §4 two examples of the practical instability are discussed.
One of them indicated by H.Takami (Fig.2) is that, |A]|=1 in D and
the stability condition is not satisfied, but the modified von
Neumann condition is satisfied. We show in this example that for
the eigenvalue with index 2, G~4 and |Gn|~4n, which causes the

pracfical instability, where || 1.

max
In another example, one in Richitmyer and Morton's book[8],

the modified von Neumann condition is satisfied and yet the condition

for the eigenvalue to be of index 2 is satisfied. Thérefore, the

practical instability occurs in the early time steps.

2. Estimation of |G | by |Gn|x .

Before stating our results, we recall some relevant notions
of the'spectral theory and matrix representation .of linear opexr-
‘ators (see Dunford and Schwartz [2], T.Kato [3] and van der Waerden
[107). Let G be a linear operator in unitary space X of dimen-
sion m(dim X=m<w), A,, --+, A, (8%m) be the distinct eigenvalues of
G; and the set 0={A1,?-~;AS} be the spectrum of G. The set of
all.uGX such that (G—Ai)nu=0'for some integer n forms an algebric
eigengface‘X(Ai) of X. The smallest n for which this is true for
all ueX(A,) is called the index of A, ‘and is denoted by n;. A

vector u¥0 is an eigenvector of G for Ay if (G-Ai)u=0. Any subset



o'co is called a spectral set, and the set X(o') of all ueX such
that Af%o'(G'Ai)nui= 0 for some integer n is an invariant subspace
for G.l For two separated sets ¢' and ¢"(o'no'"=0), the spectral
distance of o' and ¢" is defined by dist(o',c'")= min [A'-A"].

k "'i g l"

Let'{xl,---,xm} be an orthonormal basis in the unitary space

m . .
X. Then a vector u = Zaixiex 1s represented by the column matrix
1
4 al 3
ajz
u =
-8y’ .

G can be represented by an mxm matrix as a linear transformation of
the column matrix u into Gu. In the following, u, v, ... indicate

column vectors. The inner product of u and v(= ? bixi) is (u:§)=

- . 1/2
? a;b., and the norm of vector u is lul=(u,u) .  Further the
norm of matrix G is defined by |G|= max |Gu|/|u| and the norm in
O%ueX
invariant subspace X'=X(¢') is defined by IGIX,= max |Gul/|u].

O*ueX'
Let {u;,---,ué}, be a basis of any invariant subspace X'=X(o')

and U'=[u;,--~,u'm.] be an mxm' matrix of which the columns are the

basis, then G is reduced to an m'xm' matrix G' such that GU'=U'G"'.

Further let U=[U', U'", -:-:] be the union of such matrices ', u",

««+, then G is reduced to a direct sum such as GU=U.(G'3G'"®:-:).
The Gram determinant of U' is a determinant of the product

of conjugate transposed matrix U'* and U', i.e. det[U'*,U'], and

is a square of the volume of parallel polyhedron spanned by the

basis {uj,.--, u'y,}.



We consider the initial value problem with constant coeffi-
cients and with simple boundary condltlon,’so that the Fourier
integral representatlon of the solution can be used. If there
are p dependent varlables 1n d dlmen51ona1 space, then the differ-
ential equation 1s glven as |

(z.1) 2w (x,t) = P 2 u (x,t),

it 9.X

where u is a vector with p components and x is a vector with d

components. P( ) is a pxp matrix whose elements are polynomlals
of 3, ceey 3
3X1 9X4

If the solution of the initial value problem. is expressed as

u(x,t) = (Zn)"d/zJ/dk aek, tyet (s x)

"then (2.1) becomes

9 = ik)a
> u(k,t) = P(lk)u(k’t).

Hence the solution is

(2.2) | utk,t) = ¢y 0.
Now let usstart our statements. Let G be a linear operator
in a unitary‘space X, and o' and o" be separated spectral sets

of G, then X'=X(0o") and X"-X(o") are 1nvarlant subspaces of G.

Let d1m X'-m' dim X"-m'g and n'= Inj, n" = In; Dbe the sums of
' “Aeq’ A.ea"
the indices.
--The first lemma reads:
Lemma 1. Let u'eX' and u'eX' be vectors.such that |u'|=|u"|=1,
then the following inequality holds for .the Gram determinant:
dist(a',0) )M
| 2G|

(2.3) det{[u',u" 1< [u',u" ]}2 [



where M;=min(n'm'"', n"m').
Proof. Let u"e¢X" be decomposed such that
(2.4) u''= cu'+ w, (u',w)=0,
where the coefficient ¢ is given by
(u',u" )=c(u',u')=c,
.Since u'eX', we have

I (G-Ai)niu'=0.

Aiec'
Therefore
ny ny < Ny
| T (G-Ay) Tu'l=| I (G-2) “w| = W (|G]+|x;]) TIw]
Aieo' Aiéo' Aiéo'
nv
(2.5) <|2G] " |w|, n's Ing .
Xifo

n; . . . .
The operator I (G-A,) ! is regular in the invariant subspace

Ag¢a! 1
X" =X(a" ). 1
It follows that
-N n
i i
lul=| 1 SG-A ) - 0 '(G-A ) u'" |
Aieo Aieo

Ny Ny

(2.6) S|om (6-Ag) Mo, I W (G-ag) tum |
M )\150—' X Aigg'

-n n'
slomo(6-a) tl-l26] 0 |wl
Aqeo’

On the other hand, Kato's lemma (see[3]) says for any linear

operator T in a unitary space X with the inverse T™! that
IT= < TI™ 1/ |det T, m=dim X.

For an invariant subspace X'"e€ X, the lemma is that

- m
(2.7 AT Ty

1
/|det T m' = dim X",

X" I’
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where |T| is the norm in X" and TX" is the restriction of‘T

X"(

on X" for T =1 (G-A )ni.

Aj€c' i

Then (2.7) becomes
- m'
| (G-2;) "' g & 26|

-1 1 ! " n
/dist(o',c" ) .
Since
n n n
i i
| M (G-A)) Ty S| M (G-A) 7| S |26]

AiGO' Aiéo"

we have for Aie g

2 dist(o',o")m".

|det(G-A )yn | = T |Aj-xi| z

;€0
AJ (o}

Substituting the above relation into (2.6), we have

1 t " [}
(2-8) lwl g ( dlSt(U ,0 ) )n m Iu"|.
| 2G|

Then by (2.3) the Gram determinant becomes

det{ [u‘ ,U"]*‘ [u' ,U"]} det{ [u! ,Cu""W]*' [ul ,CU";‘W]}

det{[u',w]” [u',w]}

(2.9) 2n'm"

lut|? 0
0 |w|?

dist(g',0")
| 2G|

lu'] = 1.

In (2.9), X' and X" can be exchanged and hence the lemma 1 is proved.
The second lemma reads:

Lemma 2. Let normalized basis of X', X" be {v;,4°‘,v'm.} and

{vq,---,v"m"}, their matrices be V’=[v;,"‘,V'm'], V"=[VY,'°',v"m"]

then the following inequality holds for the Gram determinant:



. M
det{[V'.V"]*-[v',v"]}é(let(T'l°"b 2 | det{V'*.V'}-det{v"*.v"},
2G
where

M2 = min(n rmnz ,n"m' 2) .

Proof. We choose a normalized basis {uIe X", i=1,-°*,m"}

so that the following decomposition holds:

(2.10) u" =uj +w

i

L uie X', wiLX' and (wi,wj)=0 for i%j,

Let the matrix of their vectors be

U= [u'l"....u"m"], U'=[u;""u'm"] and W= [wl'“'wmu]’

then
U = U' o+ W,
Let the matrix of any normalized basis {vie'X', i=1l,++-,m"}

be

Then the Gram determinant is given as follows:

det{ P;f‘:’ ,U"]*' [V' ,U"]} det{ [vv ,U'+W]*' [V' ,U'+W]}

*
ARRS'A
* lw,1°
(2.11) = det{[V',W] ~[VI,WI}=, g
. 2
[Wn |
* m"
= det{V' -V'}- 1 |w,|?,
i=1

by making use of (2.10). Let the matrix of any normalized basis

{V';.E X", i=1,°-'-,m"} be V"""[V';,---’V” n]-

Since U" is also the matrix of normalized basis in X", there

exists a regular matrix S" such that




(2.12) v = g S",

Then

I 0
ve,vey] = [v',u"] - ,
0 S" .
where I;r» is a wunit matrix of dimension m'. Therefore, it

follows for the Gram determinant that

det{[V',V"] +[V',V"]}=det{[V',U"] - [V',U"]} -det{S" .5"}
(2.13)
R . - m"
=det{V'".V'}-det{S" -s"}- T |w,|2,
i=1

by (2.11) and (2.12), and for the Gram determinant of (2.12) that

det{V" "V'}=det{U" -U"}-det{S" -§"}
(2.14) .
£det{S" .S"},

since U" is a matrix of normalized basis so that det{U"*-U"}sl.

Substitution of (2.14) into (2.13) yields

"
*

m
(2.15) det{[V',V"] -[v',v"]}2det{v'*-v'}-det{v"*-v"}igl|wi|2,

where
l]![l" Iwilz g (dist(O',O"))lem"
i=1 | 2G|
from lemma 1. Since X', X" can be exchanged in (2.15),

Lemma 2 is proved.

Hence Kato's condition (1) in §1 is deduced from his condi-
tion (2).
Lemma 3. Let T and U be m-dimensional square matrices, rows or
columns of U being normalized, and let

det{U U} 2 A2 > 0.

10



Then .
[[U"° T U]

| & =— max|T,,]|,
H Tl
Ity 7 w1yl § B max|T,, |
T U ]1j = A I;l-a’); ij

This lemma is easily proved by Cramérs rule. Further, the
following lemma = can be deduced from lemma 2 and lemma 3.
Lemma 4. Let the spectral set o of a linear operator G in a unitary
space X be decomposed into two subsets

o= {o',0"},
with
dist {o',0"} 2 p > 0,

and let X' and X" be subspaces for o' and ¢', then
2G| \'M |
n*(L280)7"% max (16|, 16" o816

+M
< ms(.L%?l) 2‘max(|Gn|xr»|Gn| ).

xl'

In the difference scheme of an initial value problem the dimension
m of the amplification matrix G is nearly equal to the number of
dependent variables, Elements of G are rational expressions of

time step At, space differences Ax, and exﬁ[iijxj], where j=1, 2,

]
*++,d,and d is the number of space variables [5].

For the difference scheme, a functional relation ij=ij(At)
is assumed such that ij+0 as At~0. Hence we may take the ampli-
fication matrix for G(At,k) in D.

Take any functional relation k=k(At) in D. If o(k(At)) is
the maximum spectral set of eigenvalues which converge to a multi-
ple eigenvalue and if the invariant space X'=X(o'(k(At)))is defined

in 0<At<t, then the following theorem is derived from lemma 4.

11



Theoremn. The necessary and sufficient condition for |G"(At,k)]
to be uniformly bounded in D is that there exists a constant M

16" (k(at)) | < M,

in D and for all k(At), where X'=X(o'(k(At))) is such a subspace
that o' (k(At)) i§ a spégtral set of which elements converge to a
multiple eigenvalue as At-0.

Particularly when all eigenvalues have index 1 in the 1limit
At>0, |Gn(k(At))|x, becomes |A™(k(At))| and this condition coin-
cides with the von Neumann condition. In this case the von Neumann

condition is sufficient as well as necessary.

3. Practical stability condition for the fiﬁite At.

The stability condition is a condition in the 1limit of At-0.
Richtmyer and Morton [8] showed the various examples which satisfy
the stability condition, but their calculations were practically
unstable for a finite At. They take as a modified von Neumann
condition the restriction
(3.1) In(at,k)| < efAt,
where r=max Ref, & is the eigenvalue of P(ik) in (2.2) for all k
and all eigenvalues for each k. "Although the practical instabili-
ty often depends on the initial-condition, we consider only the
practical instability caused from the amplification of the vector
by G". The power of the eigenvalue IAnlmax is not always adequate
to use for the norm |G |.

In fact the square norm |G|? equals the  maximum eigenvalue
of G"G, but |G|? is not suitable to deal with the iterated norm

|G"|. Sometimes it happens that |A] is near 1. In this case -
. max

12



| |nmax grows slowly for small n, but the calculation becomes prac-

tically unstable in the early time steps, although lenmax varies
slowly for small n.

In the following we estimate |G"| in terms of its eigenspace,
and we show that |G"| grows sometimes as nhlxln-l|G| for small n,
where hz21l. We shall let the elements of G remain constant and
increase n.

(1) Let X', X" be distinct eigenvalues of G, and u' and u'" be

normalized eigenvectors for respective eigenvalues. For the eigen-

vectors lemma 1 is simplified as

(3.2) IGl > [A'- A"
" 2(det{[u',u"] - [u',umn /-

Then
IGnl > lk'n"‘ )\"nl

= 1

2(det{[u',u"] "[u',u"1}) /2
where

R wl) > ' " . " n-1 ' n - |’ "
R N - P e P N R P R N ¢ B PRV R VA ¢ B P RVA R B

(3.3) n-1

N PSR RS P N ER PR RS for |A'[>]a"],

For |A'|<1, |Gn| decreases to 0 for sufficiently large n.
Concerning the limiting case A"-»\' in (3.2) we deal with the
eigenvalue of which the index is larger than unity.
(2) Let the restriction of G on the irreducible eigenspace

X'=X(A') be

13



12 e im'

0 Al a a '
23 2m
(3.4) A' - e o0 0 0 0 0 0 0
A? 8,11, m
0 Y
\
n n
for an orthonormal basis of X'. Then it is valid that |G |2]|G |x,

=|A'n|. We decompose (3.4) into two parts such that

(3.5) A = X'Im, + A",

where Im, is an unit matrix of dimension m' and A" is the remainder

|
matrix for which we can show (A")m =0. Using (3.4), we have

-1 -h -m+1 m'-1
(3.6)  A'T=ATTI_enAtT CAMer e 2a T A"h+-..+_(m‘,‘_1)x'“m AT

. R . 2 3
Since (i,i+1) elements are zero in A", A" ,**-+, we have

- n -1
(3.7) A ] 2 nlk‘F‘--m?x la;sgpq |
where ayy j4,¥0 for i=1,---, m'-2, as X' is irreducible.
Next let
1
wh /
max | | /o B,
h h! <o
then from (3.6) we have
m'
IA'nlx,<|A'|nLntB_1_ 1 . 2(nB)m0-1|A'|n, for nBz2.

In the case of |A'|=1-c, where c is a small positive number, the
above power attains to its maximum at n=(m'-1)/c, and then decreases

to 0 as n increases.

14



Thué eveﬁ if the stability condition for At+0 is satisfied,’
some practical instability may occur, when the distance between
the normalized eigenvectors is small, or when there is a large
coefficient in the upper triangular matrix for orthonormal basis of
the irreducible eigenspace. If the absolute value of the
eigenvalue in question is smaller than 1, this practical instabili-

ty may disappear for sufficiently large n.

4. Examples of the practical instability.

We apply the above considerations to the following examples.
In the first example of the numerical solution fer the wave
equation by H. Takami (private commumication. Fig.2) the absolufe
value of the eigenvalue is 1, and therefore the stability condition
is not satisfied, but the modified von Neumann condition is satis-
fied. The eigenvalue with index 2 is -1 and the upper triangular
element of (3.6) is 4, and hence |G|~4.

In the second example by Richtmyer and Morton about the wave
equation coupled with heat flow (Fig.3.see [8]), an instability
occurs from the firxst step and grows more and more with n. In
this case the stability condition is satisfied but the modified
von Neumann coﬁdition is not. The maximum absolute eigenvalue
is 1.7. We use the same example to see the effect of existence
of the eigenvalue with index 2 of the amplification matrix. The
modified von Neumann condition is necessary for the condition that
no eigenvalue of index 2 should appear, although both conditions

almost coincide numericaily (Fig.1).

15



Example 1. The wave equation is 32u/dt2=32u/3x2, or equivalently

ov._ aw
3t X »
(4.1) _
ow_ _ oV
L ot ax ?
where v(x,t)=3u/dt, w(x,t)=3u/ax. According to the scheme of

Courant-Friedrichs-Lewy, we set

H

] v? = v(jAx, nAt)

(4.2)

\ w; = w((j+ ; JAx, (n+ ; )At).

The finite difference equation corresponding to (4.1) is

¢ n+l _ .n n _ _n
vj vj + \)(wj wj—l),
n+1l n n+l _ n+l
: ) w = w o+ -V,
(4.3) 3 3 TV Yy )
- 0 n _ .n 2,00 _ o 0 n
L wj + \)(vj+1 Vj) + v (wj+1 ij + Wj—l),
where v=_ At/AX. The amplification matrix is
i 1 Zive-iwlzsin(m/Z)
(4.4) G(k,At) = |
lZiveim/zsin(m/Z) 1-4v?sin? (w/2) )

where w=kAx, k=27r/L, r being an integer.

The eigenvalues are

A=(1-2v?sin?(w/2)) + 2vsin(w/2)¥/ vZsin?(w/2)-1 .
Therefore, [A]| _ >1 for |vsin(w/2)]21.

Let v=1, then the matrix (4.4) is diagonalized as

16



(4.5) AMw) =] o
0
by the matrix U of the normalized eigenvectors:

. 1 e-iw/Z
(4.6) ‘ U(w) = ——

V2
-1 eiw/Z .
Eigenvalues of (4.5) tend to multiple eigenvalues -1 as w tends
to m, and the Gram determinant of U tends to O.

According to the statements mentioned in §3, the matrix of

an orthonormal basis for (4.4) is

(4.7) v=-- |1 1 ]
7T 1

and G is transformed by the unitary matrix (4.7) into

e1v 4sin? (w/2)
(4.8) A(w)

]

0 eiw

The stability condition is not satisfied due to Buchanan's

criterion, nevertheless the modified von Neumann condition (3.1)

is satisfied. Further
e-inw 2tan(w/2) *sin(nw)
(4.9) A"(w) = ;
0 einw
For w=mw, the above matrices become
S| 4
(4.10) A(m) =
LO -1)
and
-n" (-1)""tan
n !
(4.11) A (m) =] 0 (-l)n )

17



The multiple eigenvalue A(m)=-1 has index 2, and by (4.11) IAn|
n
grows approximately as 4n, while |A| =1.
In this case (v=1), the finite difference equation (4.3) has

the general solution:

n
v(x,t)=f(x+t)-g(x-t) v3=F(j+n)-G(j-n) ,
(4.12) { ~ n
w(x,t)=f(x+t)+g(x-t) Wj=F(j+n+1)+G(j-n),
with arbitrary functions F(j)=f(jAt) and G(j)=g(jAt). Note that

the solution (4.12) are the same as that of the differential
equation (4.1) restricted on the mesh points.
Now we give some examples to see the behavior of the solution

of the practically unstable finite difference equation (4.3) in the

case of v=1. Let us take an initial condition:
1, x 0,
4.13 vt =1
(4.13) 0, x>0,
wl = 0,

1, x S -t
v(x,t) = 1/2, -t<xst,
o , t < x ,
(4.14)
| ( 0, xs-t,
w(x,t) = 1, -t<xSt |

ﬂ -
k o, t<x,

so that the initial condition for the finite difference equation

(4.3) is

18



-
<
e o
[}
,——-N-A
o -
e L
A [7aY
o [}
-

(4.15) J

. L1 .
0 /21 J 0’
Y3 0, ixo0,

and its solution is the restriction of (4.14) on the mesh points.

In stead of (4.15), we take an initial condition:

0 ) 1, jS’O,
V .
(4.16) ] 0, j>o0,

)
]
(=)

This is equivalent to take additional functions v and w, the initial
condition of which is

,04

Vj =0,
4.17
( ) K {+1/2 i=o0,
Ws = ! v
L Lo, ixo.
Its solution is n+j-1 |
I -1y /2, “n<jsn,
vy = E(n+j)-E(n-j)= .
‘ o , else,
- ontjo L '\
a -1y /2, -nsjs<n ,
W, = E(n+j+1)+E(n-j)= T
0 ) t L. else ,
where 0 , j 0,

N

E(j) =t 4-1
len 7z, 5500

To introduce periodic condition, we take the convolutions of

19



the above solution and a periodic function of which the mean value

is zero : e.g.

-1, j=0 ,
P(j) = 1 j=No : 0<N <N
0, else ,

where N is the period of the functions. Since the equation is

linear, the convolutions

n © N-1 n
Pvy; = I z P(k+4N)v , etc.
J Tgele k=0 -k
n
are also the solution. It can be shown that Pv etc. are well

]
defined and periodic with the period N.

. Consider, for example, the error terms PV? and Pﬁj.

If both N and No are even, amplitudes of these convolutions
grow infinitely as n-w, This corresponds to the infinite growth
of the iterated amplification matrix [G"| when w=mw. In fact,
the infinitely growing component of PV? is the one proportional
to (-1)j+n. ‘When either Ny, er N-N, is odd, no.solution grows
indefinitely because N is fixed and no .Fourier component grows in-
definitely. Anyway, the amplitude of PV? is the same order of
magnitgude as that of Pv? itself, and hence the profiles of 4Pv§

n n
and P(vj + Vj
Aside from thetwave equation, it is difficult to find an

) are quite different.

initial condition with no loss of accuracy and with no growing
components. In practical usage, components for large
k(=Nw) are not important, and practical instabilities occur at

such large k's, since the components for small k behave approximate-
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ly like solutions of the differential equation by virtue of the
consistency property of finite difference equation. Therefore,
we can avoid the instability at the expense of accuracy; that
is, suitably mollifying the initial conditions we apply the same
difference equation to get rather smooth solution which contains
small components with large k's.

For example, we start by the initial conditions which contain
the convolution of the given initial values and the smoothing

J. -
function Y(j)=(3)2 J, with an integer J20. Spatial shift by

/2 is brought about, and its correction is necessary.

. -J J. F J
':P(J) = 2 (j) ourier Transform > (cos(kn/N)) |k|5N/2 ,
J
-J J J =0
0 = 0 y (cos(km/N)) Pv (k),
ij *33 2 sEO (s) ij_s >
_n _n
Let us apply this scheme to the solution Pvj, Pwj (J=1).
Y74 j=-n+l
PV * Y = 1 .
“ g, j=n+1 ,
0 else

) .

The following figure will be useful to understand the above result

= =

—— the exact solution of differential equation
A the solution of finite difference equation with the initial

condition (4;16)
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® the smoothing solution of A with correction shift by —1/2.

Note that, in the case of wave equation, the convolutions with
%?(;) give the exact solution for v;=0, and they give the solution
shifted by At/2 on the space axis and by At/2 on the time axis for
w;=0. These facts are deduced from the general solution (4.12).

Next let us take the following initial condition:

1-x2, |x|<1,

5 vi= 2f(x) = {
(4.18) , 0 |x|>1’

?
\~ wi= 0 |

Its solution is

v f(x+t)+f(x-1t) v?
¥ |

Let us take the initial condition for the finite difference equation

]
]

F(j+n)+F(j-n) ,

=
|

f(x+t)-f(x-t) = F(j+n+1)-F(j-n)

3

corresponding to (4.18) such as

1-(j8t) 2 ljat]<1 |
vi = 2F(j)=
3 y otherwise ,
(4.19;
- (j*+1/2)at? | -1sjAt<l-At
Wi = F(3+1)-F(j) =
o, otherwise

where At=1/M (M:a positive integer). We obtain the exact solution

for (4.1) and (4.18) as the solution of the finite difference eqs.
(4.3) and (4.19),

If, instead, we start with the initial condition :
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V; 2F(j1’

0 =
wj 0 y
we get the solution :

<
il

n
F(j+n)+F(j-n)+$
3 i,

=
]

n
F(j*n+1)-F(j-n)+e,

with additional error terms :

n

8§y = P(j+n)-%(j-n)

n

€y = ¢(G+n+1)+%(j-n)

where
o, jAats-1
j+M
(i) ={ (Gat+(-1) At -1gjAt<+l
j=-M
(-1) a2t , jatel

the profile of 9 is given as follows

-M-m v—‘;\(Af')a M+n
n <M M 0 M-n

MIn .
AVans
Mt .

-At
In this case also, the mollification by the function-%—(;) gives

the exact solution,

Example 2. The wave equation coupled with heat flow.
This stability condition is discussed by Richtmyer and Morton.

The amplification matrix for their scheme is
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r N
1 ivs -i(y-1)vs
G = ivs 1-v2%s? (y-1)v2s?
(4.20)
-ivs v2s? -(y-1)v2s2+1 ’
| us2+1 us2+1 us?+1 A

1
where y=c /c_, o=thermal conductivity/c_, s=2 sin(-=- Ax), k=2mr/L,
' 2
r is an integer, v=cAt/Ax and p=oAt/(Ax)?2.

The stability condition [6] is

(4.21) v = cAt/Ax < 1.

Though the abeove stability condition is satisfied, the calculation
of ‘the propagation of a simple jump shows sometimes the unstable
profile from the first step. The modified von Neumann condition

is |A]gl, and leads to the practical stability condition

(4.22) v < Y(1+2u)/ (vy+2u)

Fig.? shows the unstable profile in an early time step for

(4.23) v=3.0, v=(/3+2)/5, and v/u=5/3,

where the stability condition (4.21) is satisfied but the modified
von Neumann condition is not, and the instability grows more and
more with n.

Now, we shall show that even if the stability condition cAt/Ax<1

and the modified von Néumann condition v</((1+20)7 (Y*2u)) are
satisfied at the same time, the solution can be practically
unstable. First we shall look for the condition for the matrix

G of (4.20) is reduced to the diagonal form
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Then the rank of G-A, is 1, the necessary and sufficient condition
for this is obtained from (4.20) as
A1=1 and s=0 or v=0,

For this case the rank is 0 and G is a unit matrix. Hence, it

is found that the double eigenvalue has the index 2 when G has two
equél and one distinct eigenvalues. We shall look for the condition
for G to have double eigenvalues.

The characteristic equation for (4.20) is
(4.24) g(A)=(us?+1)A%+(uv2s2-(2p-yv2)s2-3)A2+((u-yv2)s2+3)A-1=0,

and since

dg .,
dX

for the double eigenvalue, we get

(4.25)  £(A,k)=(yk+(A-1) (A+1)) (k" (A-1)+y(A+1))- (A-1) (A+2) 2=0,

where
K = vZ/u and
(4.26) v2g? = ——(A-1) ((A+yk)A-(1-vk))
A(A+2) .

The double root of the cubic equation (4.24) with real coeffi-
cients is real, and from (4.25) we see that the double root of

¥

(4.13) is in the interval
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-1 <X g - _}
Vy+1

It is not difficult to see that the eigenvalue of the greatest
modulus is near -1 in the complex plane, and that it moves monotoni-
cally to the double root of the modulus less than 1 when we vary the
parameters (p, v, s) continuously, and if s=2 sin(kn/N)-+0, the
corresponding components become stable in any sense. Theis means
that the modified von Neumann condition |A|<1l is necessary for G to
have no double eigenvalue of index 2.

Therefore, we investigate the case of v/u=o, where a is the
lower bound of v/u to have the double eigenvalue A for each fixed v.
In this case the component corresponding to the double eigenvalue
A is one with s=-2 (i.e. kAx=7w), that is, the component is propor-
tional to (—1)n_le|", where A is noted to be real. This suggests
that the mollification used in the first example is also effective.
Since the general solution or any other elementary expression for
the solution is not found, some of our numerical results are given

in Fig 4a) and b).
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1.0

v=cAt/Ax

,K-Stability condition for At-0.

Above this line, Illmale

\

v=3.0
= v=(vV3+2)/5 n
x Kv/u=5/3
/Y3, Abpve this broken line an eigenvalue w;th ‘ 0
0.5] index 2 exists.

2

|
v/u=chx/o 4

0 1.0 2.0 )

heat flow for y=3, between v=cAt/Ax and

Fig.l. Stability diagram for coupled sound and

Wo=cAx/G. The stability condition is satis-_ 6

fied below the curve. Two lower curvés
approach still more as Yy tends to 1.

=3.0
$=(¢§+2)/5
u=3\)/5
n=5

20 25 ;0

Fig.3. Calculated profile after 5 cycles,
in a run in which the modified von
Neumann condition was violated, although
cAt/Ax<1(From Richtmyer add Morton[8]).
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Fig.2. Profiles of the solution of wave

equation in example 1, in §4, for
v=At/Ax=1(By H.Takami)
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Fig.4. Evolution of the weak shock wave coupled with heat flow. Governing
equations are the same as those in Richtmyer and Morton's book[8], where
u/v=0.049381 and v=0.975933. There is a double root, which is -0.953112 of
index 2 at kAx=w. No absolute eigenvalue is greater than 1.

a) The shock wave structure is completely hidden behind the error in the
initial values from the second time step.
b) On the other hand, the initial values are smoothed. The shock wave

structure can be observed in this figure.
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Fuchu-shi, Tokyo+
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away on December 27, 1975 by an accident.
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A posteriori error estimation

for Volterra integro-differential equations

Kunio Tsuruta and Katsushi Ohmori
(Received January 5, 1976)
1. Introduction
In this paper we consider a posteriori error estimation of
the approximate solution of the following nonlinear Volterra

integro-differential equation

o]

(1.1) -%E = £(t,x) + f g(t,s,x(s))ds,
0
(1.2) 'x(0) =%, 0L t{T< +w.

Recently, for Volterra integro-differential equations as
well as in the case of ordinary differential equations, varibus
approximate methods, for example, the Chebyshev series method
(1], the Linear multistep method [2], the Euler method [3],:
the Runge-Kutta method [4] and the Spline function method [5],
have been reported. In them, though a priori error estimates
to approximate solutions have been given, it seems that a pos-
teriori error estimates have not been given to approximate
solutions.

In the sequel, regarding equations (1.1)-(1.2) as an operat-
or equation and applying the theorem on the Newton method for

functional equations by Urabe [6], we prove the existence of
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an exact solution from an aporoximate solution and obtain a
posteriori error estimate to the approximate solution. In this
case this error bound is calculated by the uniform norm, and
s0 larger than the exact one for each point. In the main
Theorem 2 we obtain a pointwise error estimate under the weaker
conditions than those in Theorem 1. To obtain the first approxi-
mate solution, we use the Picard iteration method discussed by
Wolfel-l]. The merit of using the Chebyshev series is that its
derivative or integral can be computed easily and the residual
also can be easily. Though the Wolfe's method is essentially
the application of the method of Clenshaw and Norton [?], the
proper error estimate of the computational Chebyshev series to
an exact solution was not discussed. On the other hand, in
section 3 our main theorem guarantees the possibility of gett-
ing the proper error boun to an approximate solution obtained
by Wolfe's method. In general, the speed of the convergence by
the Picard iteration method is easier than the Newton method
to get the computational solution. In our case, if we could
not get the adjoint kernel X(t,s) explicitly, it is not easy
to do the Newton iteration. but it is possible to .do the theo-
retical Newton method and so get the better estimates than
that of the Picard iteration method, provided that a starting
approximate solution were obtained by the Chebyshev series

iterated appropriately.
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2. Preliminaries.

In this section we consider the nonlinear Volterra integro-

differential system (1.1)-(1.2) under the following conditions:

x(t): an unknown n-dimensional vector-valued function,
f(t,x): a given n-dimensional continuous vector-valued
function on I and continuously differentiable
in x € D,
g(t,s,x): a given n-dimensional vector-valued function,
(H) which is continuous on (t,s) (0« s <t < T),
continuously differentiable with respect to x in
D and g(t,s,x) = 0 (if t < s),
where D is a given domain of n-dimensional

Euclidean space R®™ and I = [0,T].
Moreover we suppose

(2.1) #(t,x) ='°’fa(f(—-—’—x—) and t,s,x) = SF’_a(f{JEﬁz are locally

Lipschitz continuous in x € D.

Let C(I;D) be a space of all continuous bounded functions

from I into D with the norm |x| = gg{lx(t)l for any x € C(I;D),
where |+]| denotes the Euclidean norm. Let Cl(I;D) be a space

of all continuously differentiable bounded functions from I
into D. Furthermore we define a product space V = C(I;R™) x RU.
For any y = [v(t),}] eV, if we define the norm Iy lly = vl +1%1,

then it can be easily shown that V is a Banach space.
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Definition. For any x(t) ¢ Ci(I;D), we define the-residual

operator fo):
t

(2.2) PEO(E) = G - £(5,x(8)) = [ g(t,8,x(a))ds.
Under the above preparations, we consider the following operator

F(x)(t) = [ Px)(t),x(0) - 7].

we also consider a linear operator from Cq(I;D) into V such
that

t
(2.3)  L(x)(6) = [IE - A(H)x(t) - [ a(tye)x(s)as, x(0)],

where A(t) is an nx n continuous matrix on I and a(t,s) an
n xn continuous matrix on (t,s) (0 s ¢ t £ T), a(t,s)

= 0 if t € s.

Lemma 1. The resolvent solution X(t,s), which is the unique

solution of the equation

t
al%_g_,ﬁl = -x(t,8)A(s) - [ X(t,u)a(u,s)du,

S
X(t,t) = I, 0L st T,

is differentiable with respect to t and satisfies the equation

. 4
aAagg,sg = 4()X(t,8) + [ a(t,w)¥(u,s)du, O s < t< L,
S
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And there exists an inverse operator L~ for (2.3) such that
(2.4) L-l(y)(t) = X(t,0)3% + j X(t,s)v(s)ds, y = [v,%].
0

Remark 1. It is well-known that if A(t) and a(t,s) are continu-
ous functions, the adjoint kernel X(t,s) exists ([81]).

Thus under the suitable conditions we can establish the modifi-

ed Newton method for the operator equation F(x) = O as follows:
(205) xn+l = Xn - L—lF(xn) (n = 0,1,2,...)-

Applying the theorem on the Newton method for the functional .
equation by Urabe [6] to the system (1.1)-(1.2), we have a

following existence theorem,

Theorem 1. Assume that the system (1.1)-(1.2) has an approxi-
mate solution x = xX(t) € D, X(0) =%, for which there are a

positive number § and a nonnegative number Y ¢ 1 such that

(1) D5=t%{xllx-i(t)|$5]CD,
t
i - - X
(i1) ggf{|¢(t,x(t)) ACt) | + él@gt,s,x(s)) a(t,s)l ds} ¢ "

for any x e C(I;Dg),

M
r i({,
- K

(iid)

where r > O and M > 0 are constants such that

Ip(x)] £ ¢ and LY < M,
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Then the system (1.1)-(1.2) has one and only one solution
x = x(t) € Cl(I;DJ) on I, and for this solution we have

1% - x| & —o
1l -Xx
3. A pointwise error estimation
In Theorem 1 assumptions (2.1) and 0 X < 1 are rather strong.
In this section we obtain a theorem relating to the politwise
error estimation under the weaker assumptions than those in
Theorem 1. In order to prove Theorem 2, we use the following

lemma which could be easily proved.

Lemma 2. For a given nonnegative continuous function u(t),
t € I, and a constant ¢ > O, we define a sequence {rn(t;c)}

(n = 0,1,2,...) as follows:
t
ro(t;c) = é u(s)ds, rn+l(t,s) = cO u(t-s)rn(s;c)ds.

Thenl}ig gﬁﬁrn(t;c) = R(t;c) exists uniformly on I, .and
R(t;c) is nonnegative, nondecreaing, continuous and satisfies

the following linear integral equation:

t
R(t;c) = ro(t;c) +c ( u(t-s)R(s;c)ds, t eI,

i

ro(t;c)

Furthermore if c } u(s)ds ¢ 1, then we have R(t;c) < .
0 1 - c‘éu(s)ds

By using Lemmas 1 and 2, we get the following theorem.
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Theorem 2. Under the hypothesis (H) we consider the Volterra
integro-differential system (1.1)-(1.2). Suppose that the system
(1.1)-(1.2) has an approximate solution x = X(t) € D, x(0) =7,
for which there are positive numbers § and M, and a nonnegative

number X such that

(1) D5=U{x||x—i(t)lg_($}CD,
tel

(i1) g\é?{lﬁf(t,x(t)) - A(t) )+ z|§(t,s,x(s)) - a(t,s)lds}sﬁ

for any x € C(I;Dg),
T
(i11) IX(t,s)|] < u(t-s) and é u(s)ds < M,
(iv) TP < r.

~ Then if rR(T;iﬁ—)é_J, the system (1.1)-(1.2) has one and
only one solution x = x(t) e Cl(I;DJ), and for this solution we
have

1R(t) - x(t)] £ rR(t;-ﬁ-), t eI,
and

1P(x ) ()1 grr (£505)  1f W # 0 (n = 0,1,2,...),

Px )(t) =0 if X =0 (n

1,2’...),

1]

M |
where r_l(t;;ﬁ—) = 5 if x £ 0 and {xn}(n = 0,1,2,...) is

defined in (2.5) with x5 = X.
Proof. At first from the definition of {xn} we have

t
(3.1)  x () - x (t) = —é X(t,s)f(x )(s)ds (n = 0,1,...).
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The proof for y = O is essentially the same in the case of
¥ # 0. So we prove the theorem only for K # O. Suppose that

X # O. Then we obtain by mathematical induction

(3.2) |P(xy) (1) [ £ v X Ipoq (B54)
and
(3.3) |%,,4(t) = x ()| < rrn(t;Jﬁ—) for n = 0,1,2,ee. &

In fact the results are obvious for n = O. Assume that X4 9X5
yesssXy are all in Dg and (3e42)y (3.3) hold for n = 0,1,2,..
«yN. From (3.3) it follows that |xN+1(t) - xo(t)l < §, that
is, XN+1(t) € D§g, t € I. Then the definition of ¢(x), Lemma 1,
(3.1), the induction hypothsis and the mean value theorem

imply that

dx
PGy (B ] = g™

- £(tyxy,4(8)) - z g(ty8,xy, 4(8))ds |
= gt Pl (%) - jélggiﬁifxxN)(s)ds - £(t,xy, 4(8))
-,Z g(ts8 %y, 1(8))ds |

(20t 3y (8)) = £Cy%,4(6)) + ACE) (g (B) = Xg(E))

+ z{g(t,s,xN(S)) - 2(ty8,xy,(8)) + alt,s) (xy, 4(8) - xy(s))}ds|

£

O

t
{IACE) = B, %, (8) + 8(x,4(t) = x(£))) ] +,£|a(t,s>

- $(t,8,xy(s) +0(xy,4(8) - xy(8)))|ds}de rry(t;X-)
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Pnaa(8) = 2y (D] < li X(t,s) Play, ) (s)ds|
< rJﬁ—_Z u(t—s)rN(s;JS—)ds
M 1 M
= rrN+1(t;%§-).

Therefore (3.2) and (3.3) are proved for all n. As the remainders
of the proof are similar to those in Theorem 1 in [6], they are

omitted here.

Corollary 2.1. Under the same assumptions as in Theorem 2, we

have

%, (8D = x(0) | < [PCxe I RCE;LS)
L e e GO R )
for WX # 0 and n = 0,1,2,... .

The proof of Corollary 2.1 follows immediately from the proof

of Theorem 2 if we regard ?(xn) as r in Theorem 2,

Corollary 2.2. In Theorem 2, if x satisfies the inequality*ﬁ(l,

we have

ir 1% - x|l € —F
X - X ——
1 - )% 1 -k

IrR(t;—YML) | <

This is just the result of Theorem 1. The proof of Corollary2.2
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follows from Lemma 2 and Theorem 2. -

Corollary 2.3. Under the same assumptions as in Corollary 2.2,

we have

| P 1< ek, [x (8) = x(8) | < o R(E;E)
fOI‘ n = 0,1,2,000 L]

The proof of Corollary 2.3 follows easily from our hypothesis

and the definition of T,
Corollary 2.4. If the adjoint kernel X(t,s) satisfies the
inequality

| X(t,8) l < ¢ exp(b(t-s)), te I,

where b and ¢ are some constants, then we obtain

c (e Xc)b) = 1) if bedie
v (exp((b+ T c)t) 1) if b+ - c#0,

b + —c¢
R(t; ) - M

ct if b+-ﬁ—c = 0.

If we solve the integral equation
t c t
R(t) = (cgexp(bs)ds) + -ﬁ% f exp(b(t-s))R(s)ds ,
0

then we find the result of Corollary 2.4.
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4, Computational procedure and numerical examples

In his paper [1], Wolfe established the Picard iteration
method with a Chebyshev interpolation series to compute
numerically the solutions of (1.1)-(1.2). In this paper we
used his procedure to provide a first approximate solution
in the following examples. Though, in genéral, it is difficult
to find the residual for X exactly, it is easy to compute it
épproximately, provided that a first approximate solution X
were obtained by Wolfe's procedure . In fact, from the defini-
tion of the residual function we find P(X)(t) so that neglect-~

ing truncation errors,

dyy Iy

H o
=i Bws T Ao gdT5CE) + Ay qaynyq T (B
AT W
where 3y = Ay, .T.(t) is the N-times computationally

iterated function by means of Wolfe's procedure and X = Yy

Wolfe's procedure is easily extended to solve the adjoint
kernel X(t,s) numerically with a double Chebyshev representa-
tion. Thus the Newton iteration (3.1) could be carried out
computationally. This procedure has not been executed in this
paper because it is pfimarily our purpose to obtain an a
posteriori error estimate for Volterra integro~differential
equations.

We now give two examples. Lspecially the first has been

used by many authors [9].
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Example 1.
%% =1 + 2t - x(%t) + zt(1+2t)es(t's)x(s)ds,
x(0) =1, 0L t < 1.
Chebyshev coefficients of X

8q 3.118449253672 ag 0.000006752824

a, 0.800895417852 ag 0.000000846036

a, 0.287218928325 a,9 ©0.000000105245

85 0.056192726040 aqq 0.000000011974

a, 0.012351784489 8,5, 0.000000001343

ag 0.002004280830 847 0.000000000141

ag 0.000338715218 a,, 0.000000000015

a, 0.000047631421 815, 0.000000000001
846 0.000000000000

Starting order of the Chebyshev series : 4 .

The number of the Picard iteration : 12 .

(1) Error estimates by Theorem 1:

M

]

178, T = 5.2x 10", yc = 0y 1% - R < 1.068 X 10

(2) Error estimates by Theorem 2:

IX(t) - R(t)| < 0.2r(e”F- 1), 0 t <1,

xn(t) = (%) = exp(te) (D = 1,25¢00)0
cf. X(1) = 2.718281828590 ,
R(1) = 2.718281828459

(Theorem 2) 17(1) - (1) € 1.540 x 10™2.
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Example 2. _

%_’ti = x(t) - 0.5 fe"“"s)xg(s)ds,
0

x(0) = 0.02, O0<K t < 2.

Chebyshev coefficients of X

a5 0.1360872 a, 0.0002507

a, 0.0602175 ag 0.0000205

a, 0.0141604 ag 0.0000010

az 0.0022177 a; 0.0 (7< 1i£29

Starting order of the Chebyshev series : 10 .
The number of iterations : 19 .
(1) Error estimates by Theorem 1:
M = 15.5731, r = 1.660 x10™2, \« = 3.483 x 10™7,
IZ - R1< 2.5861 x 1077,
(2) Error estimates by Theorem 2:
M = 7.032, T = 1.660% 10™°, v = 7.098 x 10™?,
1(6) = R(E) [ < 1.55x 1070 0725 1), 0 ¢t ¢ 2.

ef. |X(2) = R(2) 1 £ 1.17x 1072,

All the computations were carried out on the digital computer
IBM 370 MODEL/135 at the Computation Center, Waseda University.

The authors would like to express their gratitude to Professor

S

¢3

ugiyama and Professor K. Nakashima for their valuable

advices and constant encouragement.
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On the Existence of an Approximate Solution
in Chebyshev Series of a Nonlinear Integral

Equation of Fredholm Type

Mitsunobu Kurihara

(Received January 10, 1976)

Abstract

In the present paper we study a nonlinear lntegral equation
of Fredholm type and prove the existence and the uniqueness of
an approximate solution in the form of finite Chebyshev series
accurately as 1t 1s deslired for an 1isolated solution of the
integral equation. We use Galerkin's procedure based on Chebyshev
polynomials and determine the coefficients of the serles by the
method of Newton-Raphson's to obtain the desired approximate

solution. The proof we give is analoguous to that by M. Urabe [3].

0. Introduction
M. Urabe [3] studied multi-point boundary value problems for
nonlinear ordinary differential equations and proved three basic
theorems (Theorem 1, Theorem 2 and Theorem 3) on approximate
solutions 1n Chebyshev serles of the boundary value problems. He
used Galerkin's procedure baséd on Chebyshev poélynomials and
determined the coefficients of the finite Chebyshev series by the

method of Newton-Raphson's to obtain the approximate solution.
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Theorem 1 says that for any isolated solution there exists an
approximate solution accurately as it 'is desired by computing
finite Chebyshev polynomial series. Theorem 2 says that the
obtained Chebyshev approximation corresponds one to one to the
isolated solution. Theorem 3, which plays an important role in
practical applications, says that one can always assure the
existence of an exact 1solated solution by checking several
conditions on the obtained Chebyshev approximation and further
it gives a method to obtain an--error bound of the obtained
approximate solution.

It 1s expected that the analoguous.conclusion will be.
obtalned for nonlinear integral equations of Fredholm type. In _
fact, Shimasaki M. and T. Kiyono [1] obtained the numerical
solutions of the nonlinear integral equations using the method
of Chebyshev séeriés analoguous to that by M. Urabe [3]. They
gave some numerical examples and stated a fundamental theorem
analoguous to Theorem 3 to obtain the error bounds of these
numefical solutions.

In the present paper we prove two theorems analoguous to
Theorem- -1 and Theorem 2 by M. Urabe [3] on the existence and the
uniqueness of an approximate solution in the form of finite
Chebyshev polynomial series for an isolated solution. We consider

a nonlinear integral equation of Fredholm type of the form:
1
(0. 1) u(t)=f(t)+[ K(t,s,u(s))ds
‘ ’ -1

on the interval [-1,1]. Denote by J the closed interval [-1,1]7.
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Let D be an open interval. Here we assume on the equation (0. 1)
the conditions that f(t) is continuously differentiable function
of t on the interval J and that K(t,s,u) 1is continuous function
of t, s and u on the region JXJXD and also twice continuously
differentiable function of the arguments t and u on the same
region.

In order to obtain an approximate solution of the equation
(0. 1), we take the finite Chebyshev polynomial series with

unknown coefficients a (n=0,1, «++. ,m) such that

: m
(0. 2) um(t)=n£0enanTn(t).

Here we denote by Tn(t) the Chebyshev polynomial of degree n
defined in the following form:

(0. 3) Tn(t)=cos(ncos°lt) for teJ and n=0,1,
and also denote by e, the constant number of the form:
(0. W) ey=1, en=/? for n=1,2,¢ecse,

It will be reasonable to determine these m+l coefficients an
(n=0,1,°++++,m) so that

1
(0. 5) um(t)=(me)(t)+PmJ_l

K(t,s,um(s))ds

may hold. Here Pm is the operator which expresses the truncation
of the Chebyshev series of the operand discarding the terms of
the order higher than m. In what follows, the finite Chebyshev
series um(t) satisfying the equation (0. 5) will be called

Chebyshev approximation of order m.
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According to the definition by Shimasaki M. and T. Kiyono
[1], we call u=fi(t) isolated solution of the equation (0. 1) when
it is a solution of the equation (0. 1) the filrst variational

equation of which
| 1 sk
(0. 6) v(t)-J 3K(¢,5,0(s))v(s)ds=0
-1

has no continuous solution except v(t)=0. The nomenclature comes
from the fact that for any isolated solution u=0(t) of the
equation (0. 1) there is no other solution of the equation (0. 1)
in a sufficiently small neighborhood of U=QG(t). (see [1]).

The conclusion of the present paper 1s the following two
theorems.

Theorem 1. If the equation (0. 1) has an isolated
solution u=Q0(t) lying in an open interval D for any t€J, then

for sufficiently large m, there exists a Chebyshev approximation

0

u=ﬁm(t) of any order m>m, such that the sequence ﬁm(t) converges

0
uniformly to the solution (t) on the interval J.

Theoremv2. The Chebyshev approximation u=ﬁm(t) stated
in Theorem 1 is determined uniquely in a sufficiently small
nelghborhood of u=0(t) provided the order m of the Chebyshev
approximation u=ﬁm(t) is sufficiently high.

In order to prove Theorem 1, we use the following lemma proved

by M. Urabe based on the Newton-Raphson's procedure to determine

the coefficients of desired Chebyshev approximation.
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Lemma. (M.Urabe [2] and [3]) Let
(0. 7) F(a)=0
be a given real system of equations, where a and F{a) are vectors
of the same dimension and F(a) 1is a cbntinuouslyldifferentiable
function of o defined in some region £ of the a-space. Assume that
(0. 7) has an approximate solution a=8 for which the determinant
of the Jacobian matrix J(o) of F(a) with respect to o does not
vanish and that there are positive constant § and a nonnegative
constant k<1l such that
(1) az={affa-als}CQ
(2) Na(a)-d(a)|) <k/m' for any a€Qg
(3) M'r/(1-k)<$,
where r and M' are numbers such that
IF ()N <r and la~tcay<m.
Then the system (0. 7) has one and only one solution a=0 in 96
and for a=a 1t holds that
detJ (a)#0 and loa-8K<M'r/(1-k).
Here we denote by the symbol | || Euclidean norms for vectors and

matrices.
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1. Some Properties of Chebyshev Seriles
Denote by C(J) the family of all continuous functions of t
on the interval J. For any function f=f(t)€C(J) we use the two

kinds of norms “f“n and “fnq, which are defined as follows:

(1. 1) hell -suplf(t)l
ted
and
(1. 2)  Nelg=tz f |£(6)|2(1-62)" " 2q871/2,

When we use the notations (0. 3) and (0. 4), it is known
that any function f=f(t)€C(J) is expanded in Chebyshev series of
the form:

(1. 3) £ ] CnnTn(8)s
n=

where

1
an=%enj £(6)T () (1-82)72 2ag

-1
Applying Parseval's equality to the expansion (1. 3) and using

the definition (1. 2), we have
2_ ¢ 2
(1. 4) Nels= |a |
2 p=p 1
In particular for finite Chebyshev series of the form:

£ (t)-nzoenanTn(t),

the equality (1. 4) implies that
a5 rglglel,

where o 1is the vector a=(a0,a -----,am).

l’
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Moreover using the equality (1. 5) and Schwarz's inequality for
the same finite Chebyshev series, we have

(1. 6) el <v/2mFTllall.

By the definition of the operator Pm;C(J)+C(J) for any

f=f(t)eC(J) we have

m
(me)(t)=nzoenanTn(t).

Consequently it follows that

(o]
((I-P )f)(t)n» ) e a T (t),
m n=m+1 0 001
where I denotes the identity operator. If f=f(t) 1s continuously

differentiable function of t on the interval J, it is proved that

(. n o la-epel omlicz-p il <ol
and
(1. 8) "(I—Pm)fﬂqéol(m)u(I—Pm_l)f"qéol(m)"f"q

for m=0,1,+¢++¢, where P_1=0, f=df/dt and the functions o(m) and

ol(m) are monotone deceasing of m satisfying respectively

(1. 9) %giéo(m);/ﬁ//ﬁ and o) (m)=—3=.

These properties of Chebyshev series was proved in detail in the

paper by M. Urabe [3].
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2. Fundamental Inequalities
If u=0(t) is an isolated solution of the equation (0. 1)
lying in‘the interval D for any t€J, there exists a positive
number 6 such that
Ddé{u||u~0(t)|;6 for some teJ}CD.

Denote that ﬁm=Pmﬁ. It follows from the inequalities (1. 7) and

(1. 8) that

aq
(2. 1) lo ol <o0m)]| Gl iy om)
and

da
(2. 2) “ﬁm—ﬁuqéol(m)"agﬂq;Mlol(m),
where

arf oK
M,=max|=z(t)|+2 max |z3(t,s,u)].
17y at gxaxs 2t

Hence from the inequalities (1. 9) and (2. 1) there exists a

number my sufficiently large such that for any m>m

ﬁm(t)eDé:D for any tedJ.

m

The coefficients a=(a0,a -----,am) of our deslired Chebyshev

l’
approximation of order m

m
um(t)=nzoenanTn(t)

will be determined from the equation (0. 5), that is equivalent
to the system of nonlinear algebraic equations
(2. 3)  F™ (a)=(F(a),Fy(a), 200+, F (a))=0,

where

m
Z enFn(a)Tn(t).

1
(2. ) um(t)-(me)(t)—PmI_lK(t,s,um(s))ds=

n=0

56



The equation (2. 3) is called determining equation of Chebyshev
approximation,
In order to determine a domain where the function F(m)(a) is

well defined, we take a number m,2m, such that for any m2m

1 2

Vm={u||u-am(t)|;6—Mlo(m) for some t€J}<D LD
since

|u—ﬁ(t)I;lu—ﬁm(t)|+|0m(t)—a(t)|;6—Mlo(m)+ﬂ0m—ﬁun
for any ueVm; Let us put that

ﬁ(t): X e a T (t) and a:(a ’2_ ,ooooo,a )
hZp nnn | 0°% m

and define the domain of the form
1
T/ 2m+1

a_ ={a|||a-a| (6-M;0(m))}.

For any a=(a0,a ----',am)eﬂm .

l’
we obtain

m

um(t)=nzoenanTn(t)&Vﬁ:D for any teJ

since

lu ~a | </2m+Illa-&|<8-M 0 (m)

from the inequality (1. 6). Therefore it is concluded that the
function F<m)(a) is defined on the domain Qm and continuously
differentiable function of o on the same domain from the definitilon
(2. 4).

Let Jm(a) be the Jacobian matrix of the function F(m)(a).

To investigate the properties of the matrix Jm(a), let us consider
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a linear equation of the form

(20 5) Jm(a)£=n’

where

a=(a0,al,--°'°,am)69m,
E=(XgsXpse e sX ) and N=(¥gs¥qsttt sy, ).
If we put
m
um(t)=n£0enanTn(t)’
m m
v(t)=n£0enann(t) and w(t)=nzoenynTn(t),

then by the definition of the Jacobian matrix Jm(a) we have

' Lok
(2. 6) v(t)—PmJ 1§E(t,s,um(s))v(s)ds=w(t)

corresponding to the linear equation (2. 5).
Substituting Om(t) for um(t), we rewrite the equation (2. 6)

in the form

1 ook
2. 1) ve)-] is,,008))v(s)ds=w(6)+R(E),
-1
where
1k
R(t)=—(I—Pm)I ga(t,s,ﬁ(s))v(s)ds
-1

1
dK 3K
_PmJ_l[ﬁ(t,S,ﬁ(S))"'ﬁ(tss,ﬁm(s))]V(s)ds.

It is easy to prove from the inequality (1. 8) and the Parseval's

equality (1. 4) that
1
2. 8) “an;ol<m)ugg[_l§§<t,s,a<s))v(s)dan
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1
+“]_1[%§(t,s,a(s>)-%%(t,s,am(s))]v(s)ds“q

Mooy (m)] vl g #usla-a || vl < (Mp+amy oy (ol vl »
where

=/2T max |

(t s,u) ]
IXIXD

2 dudt

and

2
M3—n max |a =—5(t,s su)| .
JXIXD au

From the definition of the isolated solution u=0(t) and well-
known theory for linear integral equations of Fredholm type it
follows that there exists a constant number M such that

NV <Miw+R()

for the equation (2. 7). (see [1] or [U4]) Therefore from the
inequality (2. 8) we have

il il +URN ) <ilfwll +M QM+ M, Yoy (m)ll vl
If we take m3;m2 sufficiently large, we obtain for any mg_m3

M
“V“q;l—M(M2+M3Ml)01(m)%w"q

By the equality (1. 5) this is equivalent to the inequality

‘ M
(2.°9) nguél_M(M2+M3M1)ol(m)nn“'

It readily follows from the equation (2. 5) that for any mZm3

(2.10)  detJ (8)#0
and
M
G O MR, #0_M, Yo, ()=
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where M' is a constant number. In fact, put n=0 in (2. 5), then
by (2. 9) we have £=0, which implies (2.10). By (2.10), from (2. 5)
we have

|
E=J (&)n.

Then by (2. 9) we have (2.11). This inequality (2.11) plays an
important role in cthe proof of Theorem 1.
Let
a'=(aj,ajs***e,ar) and a"=(ag,alseec,an)

be arbitrary vectors belonging to the domain Qm. Then both

m m
ul (€)=} e a!T (t) and u'(t)= ] e aT (t)
n= n=0

Oennn nnn

lie in V <D for any teJ. For any vector £=(x0,x1,-----,xm) let us

put
(2.12) g (a')E=n'  and  J (a")g=n",
where
LAETC2I 2 IRREERINAD and  n"=(yg,yYsceete,yn).

Corresponding to the equations (2.12), we have

(2 13) v(t)=-P [l gﬁ(t s,u'(s))v(s)ds=w'(t)
* m _lau *T3"m

and
1ok
- o " !
v(t) ij_lau(t,s,um(s))v(s)ds w"(t),
where
m
v(t)= } enann(t),
n=0
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m m
= ' n = n .
w'(t) nZoenynTn(t) and w"(t) nZoenynTn(t)

By the equation (2.13) and (2.14) we have
1
W'(t)-w"(t)=-PmJ [%g(t,s,uﬁ(s))-%%(t,s,u;(s))]v(s)ds.
-1 :

Then it is easy to prove from the Parseval's equality (1. 4) and
Schwarz's inequality that
g gt 2K (8))-28(¢,5,u"(s)) Iv(s)ds|
ffw'-w "q=" N aaltss,up(s))—z=(t,s,ur(s))Iv q
<M flut-utlg Wil -
On the other hand, it follows from the equality (1. 5) and the
equations (2.12) that
Hug-umilg=llar=am,  fviig=Nel
and
lw=w"lj =lin"=n" =I5, (a" )&=, (a")E]|.
Hence we have
ICa(ar)=a (am) JegMglla —a i E,
which implies

(2.15) llJm(a')-Jm(a")n;M3||a'—a"n

for all vectors o' and a" belonging to the domain Qm. This
inequality (2.15) also plays an important role in the proof of

Theorem 1.
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3. Proof of Theorem 1
Let u=Q(t) be an isolated solution of the equation (0. 1)
lying in the interval D for any te€J. Denote that Om=Pmﬁ and put

m

am(t)=nz 4T (t) and a=(ao,al,-----,am).

Oen nn
It is concluded from the previous section that there exlists a
number m3 such that for any m;m3 the function F(m)(a) defined in
(2. 3) and (2. 4) 1is continuously differentiable of o on the
domain Qm and the Jacobian matrix Jm(a) of the function F(m)(a)
has the inverse J;l(a) at a=8 satisfying the inequality (2.11)
and satisfies (2.15).
Now we will apply the Lemma in the section 0 to the equation
(2. 3), the roots of which are the coefficients of our desired
Chebyshev approximation. For any m;m3 let us put
1
Om(t)-(me)(t)-PmJ_lK(t,s,am(s))ds=Rm(t).
This 1s rewritten in the form
1
Rm(t)=PmJ_l[K(t,s,ﬁ(s))—K(t,s,ﬁm(s))]ds
and hence from the Parseval's equality (1. 4) and Schwarz's

inequality 1t follows that
1
annq;uj_l[K<t,s,a<s>)-K(t,s,am<s>>]dan

<My )0 -0 g <MyMy o, (m)

where

M) =v/2m max_l%%(t,s,u)l.
IJXJIXD
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If we put
(M) (a)=p,

then we have from the equality (1. 5)
3.1 el =lIr™ (@)l ={r ) gm0, (m)

Since Gl(m)=(m+l)-l, the inequality (3. 1) expresses that a=8 1s
an approximate solution of the determining_equation (2. 3) for
any sufficlilently large m.

In order to check the conditions (1), (2) and (3) in Lemma
in the section 0, we take an arbitrary ndnnegative number k<1l and
put

61=min{ﬁgﬁf, G—Mlo(m3)}.

There exists a number my2my SO that

[M'MlMu/(l—K)]ol(m)<61//2m+l

-1/2

may hold for any m>m,, since /2m+101(m)=0(m ) as m*e, If we

take Gm such that
(3. 2) [M'Mlmu/(l—K)]ol(m)<6m<al//2m+1;

(3. 3) 96m={a|n 0=l <8 Iy -

In fact, for any aeQ6 and any m;mu
m .

la-all<8 <8, /v2m+I

<[8-M,0(m;)]//2m+I<[6-M,0(m)]/V2m+1,

which implies aeQm. Moreover for any ueQG and any m;mu we have
m

(3. 4) NI Ca)=a (8| <Msllo-Bll<Ms 8 <Mo8, <k/M" .
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Finally by the inequalities (3. 1) and (3. 2) we have

(3. 5 Mleleryim m,/(1-6) Jo) (m)gs .
The expressions (3. 3), (3. 4) and (3. 5) show that the conditions
(1), (2) and (3) are fulfilled.

Thus by the Lemma in the section 0 we see that the determining

equation (2. 3) has one and only one solution a=a in the domain

96 satisfying

m
detJm(a)#O
and
(3. 6)  Ja-a) <Ml ryrm my /(1-6) 10, (m) .
If we put
- - - - ) - m -
a=(a0,al,-----,am) and um(t)= Y enanTn(t),

n=0

then ﬁm(t) 1s a Chebyshev approximation and satisfies for m;mu

nam—a“nénﬁm—amhn+ﬂam—ann;/2m+l"&—&H+Mlo(m)
;[M'MlMu/(l-K)]/2m+101(m)+Mlo(m)

from the inequalities (1. 6) and (3. 6). The functions /2m+101(m)

-1/2) as m+*o, Thls proves the existence

and o(m) are equal to O(m
of a Chebyshev approximation ﬁm(t) being convergent uniformly to

the solution G(t) as m+w,
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b, Proof of Theorem 2
Let u={i(t) be an isolated solution of the equation (0. 1).
For any positive number € we choose a number mO such that for any
m;mo,cl(m)=l/(m+l)<e and suppose that for any m2m there are two

Chebyshev approximations

(4. 1) u=ﬁm(t) and u=ﬁ&(t)
satisfying
(4. 2) ”ﬁm-ﬁun;e and “ﬁa—ﬁ“n;e.

Hence the two Chebyshev approximations (4. 1) lie in the domain
D€={u||u—0(t)|<e for some teJ}<D
for any te€J. Let us put vm(t)=ﬁm(t)—ﬁ$(t). By the definition of

the Chebyshev approximations (4. 1) we have

1
(4. 3) vm(t)=PmJ_l[K(t,s,ﬁm(s))-K(t,s,ﬁé(s))]ds

[ 9K ¢ 5,0(s))v_(s)ds+R(t)
= -155 »8,0(s))v _(s)ds ,

where
R(t)=P Il Jl[§5<t,s,ae(s))-%E(t,s,a(s))]v (s)dods
m -1Jo ou m u m
~(I-P )Jl K ¢ s a(s))v_(s)ds
m _lau 2= m
and

G0 (6= (6)+6[T (£)=G ()]

Noting the fact that Gl?l(t)EDE for any 6€[0,1] and any t€J, it is

easy to see from the Parseval's equality (1. 4) and Schwarz's
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inequality that
IR N <Maelv | 4oy v | <(Mo+my)efv N,
and M, are the constant numbers defined in the section 2.

2 3
Using the theory for linear integral equations of Fredholm type

where M

for the equation (4. 3) and the definition of the isolated solution
u=0(t), we obtain
where M is the constant number used in the section 2. Since € 1is
arbitrary, the inequality above implies that

“Vm“q=0.
From the Parseval's equality (1. 5) for the finite Chebyshev series

vm(t) it follows that

vm(t)=0 for any te€dJ,

that is,

um(t) um(t) for any teJ.

This proves the uniqueness of Chebyshev approximations and hence

completes the proof of Theorem 2.
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