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OBITUARY 

Minoru URABE 

(1912-1975) 

Professor Minoru Urabe died of lung cancer on September 4, 
1975. He was 62 years of age. 

Minoru Urabe was born in Kobe on December 2, 1912. He 
graduated from the Hiroshima University of Science and Literature 
(now Hiroshima University) in 1940, continued his studies in 
mathematics and received the doctorate from the same University 
in 1953. 

In 1946 he assumed a post in the mathematical teaching 
staff at Hiroshima University and became Professor of Mathematics 
there in 1952. He was appointed Professor at Kyushu University 
in 1963, Professor at Kyoto University (Research Institute of 
Mathematical Sciences) in 1966~ and in 1971 he returned to Kyushu 
University as Professor, thereafter holding th~s post until his 
death. 

His researches began with geometry and subsequently extended 
to functional equations, ordinary differential equations, numerical 
analysis and nonlinear oscillations. The paper "Galerkin's 
Procedure for Nonlinear Periodic Systems" (Arch. Rational Mech. 
Anal., 20(1965), 120-152) and the book "Nonlinear Autonomouo 
Oscillations-Analytical Theory" (Academic Press, New York, 1967) 
are among his most fundamental and well-known publications. 

The outstanding research work and scholarly attitude of 
Minoru Urabe constituted a source of great stimulation and 
encouragement to his friends, colleagues and students, who will 
always remember him with affection and gratitude. 

Yoshitane SHINOHARA 
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Energy Estimates for the Solution of Hyperbolic Equations 

by a Finite Element Mass Scheme 

* Kazuo ISHIHARA 

Summary 

The solution of the initial boundary value problem for 

hyperbolic equations is approximated by the fipite element 

method with the generalized mixed mass scheme presented in 

the previous papers([4],[5]). The stability condition is 

obtained and the rate of convergence is established for the 

approximation. Numerical experiments are also performed. 
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1. Introduction 

This paper concerns the finite element schemes applied, to the 

initial bo~ndary value problem for hyperbolic type: 

a 2u/at 2 = 6u + f(x,t) x E: n, Oc::.tST, 

u :::: ° on r, ° <.t~T, 
(1) 

u(x,O) :::: uO(x) x E: n, 

a Ttu(x,O) = vo(x) x Eo n. 

Here f, Uo and v o are given smooth functions, ~ is the Laplacian 

operator and x=(x l ,x 2 ,···,xm) is a point of a bounded domain n 

in the m~dimensional Euclidean space Rm with the smooth boundary 

r. 

Let L2 (n) be the usual real space of square integrable 

functions on n. The scalar product and the norm on L2 (n) are 

denotedby (., .. ) and ".n, respectively. Hl(g) denotes the real 

l-st order Sobolev spac~. H~(n) is the set ~efined by 

H6 ( n) :;: {u E HI ( n): u = 0 on r} . 

The weak solution of (1) is defined as a function u E H~(g), which 

satisfies the weak form: 

(o2 u/ dt 2,v)+a(u,v)=(f,v), O<t~T for each vEH~(fn (2) 

where a(u,v) is given by 

a(u,v)=fn{Ei:ldU/dXi:aV/aXi}dXldX2"'dXm' 

To introduc~ the step-by-step methods, we set un~u(x,n6t), 

° 1 2 . H At is the time increment and p·~t=T. We apply n= " , ... ,p. ere u 
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to (2) the consistent mass(CM) scheme and the lumped mass(LM) scheme 

with piecewise linear polynomials. Then the corresponding equations 

may be written in the following forms by the step-by-step methods with 

a paramet er 8 ( ~ 0) : 

MlDtDtVn+KVn+136t2KDtDtVn=~n for the CM scheme (3 ) 

M2DtDtVn+KVn+136t2KDtDtVn=F~ for the LM scheme (4 ) 

where "n V and -n 
V are unknown vectors, and D­t are forward 

and backward difference operators in time defined by 

K is the stiffness matrix, Ml is the eM matrix, M2 is the LM 

matrix, and 
4I'n -n F , F are known vectors. 

In the previous papers([4],[5J), the author presented the 

generalized mixed mass(GMM) scheme for the eigenvalue and parabolic 

problems. In this paper, we propose similarly the GMM scheme for the 

hyperbolic problem. Tne equation for the GMM scheme with parameters 

a and 8 (0 ~ a ~ 1, 8 Z. 0) is as follows: 

n=1,2,···,p-l. 

For this scheme, we can derive the stability condition in the 

( r, ) 

L 2 

sense and establish the error estimates. The GMM scheme includes 

the CM scheme(a=l) and the LM scheme(a=O) as its special cases. Finally 

some numerical experiments are performed. 
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c~t-8bjl tt~T Condit1on 

T~roughout this paper, we will use the same notations as the 

previous paper[5]. It is assumed that the domain n is the convex 

polygon and the solution u of (1) satisfies certain smoothness 

condition. Let Th be a triangulation of the domain as follows: 

Here ~k(k=1,2,. ··,N) are disjoint non-degenerate m-simpliceG suetl 

that anyone of its faces is either a face of another m-simplex or 

else is a portion of f, and h is the largest side length of all 

tLem-simplicesof Th. By Pi,l~iSn,(or Pi,n+l~i~n+J) we 

denotp the ve~tices of the triangulation Th which belong to n(or 

r ) . 

We now define the lumped mass region B(P i ) corresponding to 

the vertex Pi with respect to Th. Let bO=P i , b l ,···, bm be the 

vertices of some m-simplex ~k of Th. We define the barycentric 

coordinate Ai corresponding to the vertex b i (O~ i~ m). Then the 

bar~centric subdivision B~ of ~k corresponding to Pi is defined 

by 

for any j=l,···,m}. 

'l'rle lumped 'mass region B(P i) is the union of Bk having 
i 

as 

its vertex. and 

which satisfy the relations: 

~ (i=l 2 ... n+J) stand the functions . i " , 



"'" <p . (P . ) = ° . j , ( I ~ i, j ~ n +J ) , 
l J l 

~i is linear for each m-simplex 

¢j(P)={ ~ P':B(P i ) 

P~B(Pi) (IS i~ n+J) 

(I ~ i ~ n+J) , 

where 0ij 

Xh ( c::. L2 ( n) ) , 

is Kronecker's delta, Define finite dimensional spaces 

" <p=O 

yh as follows: o 

on r}, 

Every ~ E- Xh and ¢ ~ yh can be uniquely determined as 

where an~ .8 i are nodal values, Two functions 
A 

and <p are 

called associative and denoted by - /!to. <p'V<p, if they have a common nodal 

value at each vertex. Following to Ciarlet-Raviart[l] and Fujii[3], 

we also introduce the parameters K and cr ,which are associated 

with the triangulation Th, We denote by K the minimum perpen-

dicular length of all the m-simplices of Th. Let Ai(O~i~m+l) 

be the barycentric coordinate of a point xE ~(E- Th) with respect 

to the vertex Pi' We associate the parameter 
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with 

DAi=(dA./dxl'····,dA./dx), l~i!!:m+l, 
11m 

<DAi,DA.> 
cos(DAi,DA j )= lDAi\'I~Ajl' l~i,j~m+l, 

where <.,. > and ,. \ respectively denote the Euclidean scalar 

product and Euclidean norm in Rm. Then a is defined by 

a = max a/':;. 

tl E- Th 

An acute triangulation satisfies the condition a~0([lJ,[3J). We 

will use the following notations and definitions: 

" 1.\ K={a(¢i'¢j)} 

A "" Ml = {( ¢ i ' ¢ j ) } 

M2={(¢"·,,¢·)} 
- 1· J 

M3 =aMl +. (l-;-a) M2 

"" '" F= { (f , ¢ . ) } 
1 - -F= { (f , ¢ . ) } 
1 

A =J2 (asO) 

m t m+ 1 (a? 0) . 

(l~i,j~n+J) stiffness matrix, 

(1 ~ i,j~ n+J) eM matrix, 

(l-Si,j~n+J) LM matrix, 

(0 ~a~ 1) GMM matrix, 

(1 ~ i ~ n+J) , 

(1 ~ i ~ n+J) , 

Th 1 · {An- -n} ( ) e so utlons v,v n=O,l,·· .,p of the GMM scheme are 

defined with parameters a and S(O~a~l, 62;0) as follows: 

nA n-= a(f ,¢)+(l-a)(f ,¢), n=1,2,· ··,p-l, 

(6 ) 

"n~ yh -n h I'n -n 
v ~ 0' v Eo Xo' v rv V for each A h - h"" -

¢ E YO' ¢ C. XO' ¢ I"V ¢ , 

where 
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-1 n+J {" . 't ') . ( )'}- " v =1: i =l UO\P i +~tvo Pi <Pi·" . 

This scheme is equivalent to the matrix expression (5). The GMM scheme 

includes the LM scheme(a=O) and the eM schem~(a~l) as its opecial "~ 

cases. We assume that 0,( a < 1. Our results are valid for a=O and 

]=1. In these cases we can obtain the similar ~esults discussed in [2J. 

Now we shall derive the stability condition. It is well known that 

the solution u of (1) satisfies the following energy inequality: 

2' m 2 II au/atll (t) +1: i =lll au/axill (t) 
" . 

0<: t< T 

",here is a positiv~_·constant. ·We say that the GMM scheme is 

t bl ·f t {An -n} 3 a e 1 he solution v ,v of (6) satisfies the energy 

lnequality, anagolous to (7), that is, 
"". _ 4' . 

An ,2 . ' -n 2 m i\n 2 
allDtv' +(l-a)IlDt V II +1: i =lllav /axiU 

~ c 2 {all Dt ¢OIl2+ (l-a HI Dt vOrr2+1: i~lll a~o /ax i" 2+1:~:i ~t" f i ,,2} , . . 

n=2,3,··· ,p 

... here is a positive constant. The stability "condition is derived 

Ising the fol+owing lemmas. 

L 1 F 1\ L h - L h (A -) emma . or any W1ll:' Y and W1ll:" X w IV.W , it holds that., 

'There 

A 
A (m+l) (m+2) m 
2' • 

K {m+2-(m+l)a} 

Proof. Fuj 11 ( [3 J) has shown t.he following re-sul t s : 
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Combining th~se two inequalities yields the desired statement. 

Lemma 2. Let xn be the nonnegative s'equence(n=1,2,'" ,p). If 

~ >0 - , O~ t<:'l and n=1,2~""p, then, 

~ n 
Xn~ c/(l-t) , 

and 

n=1,2,···,p. 

Proof. This lemma i~ easily proved by induction. 

Theorem I." The GMM scheme is unconditionally stable if 8Z1/4 1 

o~ stable under the condition 
,..-....----........--

-ll..< m+2-(m+l a 
K Am(m+l)(m+2) 

2 

if O~ 8 < 1/4. 

Proof. Choosing in (6), multiplying 

~t and summing from n=l to n~r-l, we have 

~ (\\ Dt ~r" 2 -liD t ~ 0" 2 ) + ( I-a) <I, Dt yrn 2 _ ltD tV 01,2 ) +a (~r ,~r) -a (~O ,~o ) 

"r "r AO 1\0" 2 Ar Ar 1\0 I\O)} 
-~t{a(v ,Dtv )+a(v ,Dtv )}+B~t {a(Dtv ,Dtv )-a(Dtv ,Dtv 

r-l {( n An An n -n ".,.n} 
=En=l~t a f ,Dtv +Dtv )+(l-a)(f ,Dtv +Dtv ) 

~ aE~:i ~tll fnIl2+aEn~1 ~tIlDt~n,,2+ (I-a) E~:i ~tnrnIl2+ (l-~) En~l ~tn D'tvnH 2 
:: E~:i ~ til fnR 2 +Ep~l t\ t {all Dt ~n1l2 + (l-a)l\ Dtvn" 2} • 

Here we have used the following identities: 

r-l An An "n Ar 2 AO 2 
Ln=l~t(DtDtv ,Dtv +Dtv )=llD't V II -IlDt V n , 
r-l An An An "r Ar 1\0 AO 
En=l~ta(DtDtV ,Dtv +D~v )=a(DtV ,Dtv )-a(Dtv ,Dtv ), 

r-l An An "n ~r I\r AO AO 
En=l~ta(v ,DtV +Dtv )=a(v ,v )-a(v ,v )-

"r "r "0 I\O} ~t{a(v ,Dtv )+a(v ,Dtv ) . 
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Therefore, for an arbitrary numbe.r £ ~ 0, we obtain 

I\r (2 . -r 2 I\r Ar 2 Ar Ar 
allDtv I +(l-a)UDtv" +a(v ,v:)+S!::.t a(Dtv ,DtV ) 

1'0 2 -0 2 1\0.1\0 2 1\0 AO I\r I\r 
~al\Dtv l\ +(l-a)l\Dt v \\ +a(v ,v )+S!::.t a(Dtv ,Dtv )+a(v,,!::.tD't v )+ 

. . . 

a (~o ,!::.tDt ~o) +E~:i!::.t "fn " 2+En~1 !::.t {anDt~n" 2+ (I-a)" Dt VnU2 } 

AO 2 -0 2 ,1\0 1\0 2 AO AO £ .l\r Ar 
~anDtv l\ +(l-a)llDtv II +a(v ,v )+S!::.t a(Dtv ,Dtv )+"2 a(v ,v )+ 

!::.t 2 Ar I\r '£ AO 1\0 !::.t 2 1"0 1\0 r-l n 2 
2E"a(Dtv ,DtV )+2 a (v ,v )+2£"a(Dt v ,DtV )+r:n=l!::.tllf " . . 

r An 2 -n 2 
+En=l~t{a'\D'tv, \\ +(l--a) IID'tv " }. 

From Lemma 1, this may be written as 

i\ r 2 - r. 2 £. (i\ r I\r 
a I' Dt v \\ + ( I-a) l\ Dt v \\ + ( 1- T ) a v ,v ) 

AO 2' -0 2' . £' 1\0 AO 1 2 I'r Ar 
~a\\Dtv 1\ +(l-a)II Dt v \\ +(1+2" )a(v ,v )+(2£' -S)!::.t a(Dtv ,Dtv )+ 

2 1 A 0 1\ 0 r-l n 2 r An 2 - n 2 
!::. t (2£ + S ) a ( D tV, D tV) + E n = 1 !::. t n f 1\ + E n = 1 !::. t { a" Dtv n + ( I-a) II Dt v II } 

~a\\Dt¢0,,2+(1-a)nDtVO"2+(1+ ~ )a(OO ,¢O)+ 

1 2·' "r 2 - r. 2 .' 
max{O, 2£ -S}!::.t A{aUD't:v' n +(l-a)UDtv.ll }+ 

( ~£ +S)!::.t 2A{al\Dt ~°tl2+(1-a)\\Dt vOn 2}+E~:i!::.tllfnn2+ 

En~1!::.t{aI\Dton«2+(i-a)"Dt~n"2+a(on,~n)}, 

that is, 

[1 - max{O, ~£ -S}!::.t2A]{aIlDtVr\\2+(1-~)IIDtVr,\2}+(1- ~ )a('~r;~.r) 

~[l+( T+(3)!::.t2A]{aI\DtVO,,2+(1-a)IIDtVO,,2}+(1+ ~ )a(~O,OO)+ 

E~:i!::. t "fn " 2 + En~l !::. t {al\Dt vn" 2 + (I-a) UDt 'in" 2+a (yn ,~n) } . 

Then, we can obtain the following inequality 
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a.Dt~rl\ 2+ (l-a )Il Dt v!(\ 2+a (~r ,~r) 

~ C {a"Dt~OI\ 2+( l-a )l\Dt'V°n 2+a (¢O ,~O) +L~:i f).tll fnl\ 2 } 

with some positive constant C, from Lemma 2, if 

1 2 l-max{O, 2e: -6}f).t A,?O, 
(8) 

. e: 
1- 2 >0 

holds s imul taneously. If . t3 :> lilt, (8) 1s sat isfied for any f).t and 

K by choosing e:= 2~ . If 0" B~ 1/4, (8) is satisfied when the 

quadratic equation in E 

has a positive root e:(0 <: e:< 2). This is satisfied for any f).t and 

K if B=1/4, or for the condition 

6t( m+2-(m+l)a 2 
K . Am(m+l)(m+2) • Jl-4B 

if 0< S< 1/4. This completes the proof. 
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3. Rate of Convergence 

This section gives the rate of convergence for the GMM scheme. In 

the sequel, Cl ,C 2 ,· ... are positive constants which are independent 

of hand 1\ h - h 6.t. Let u E YO and uE. Xo be the associative inter-

polated functions which coincide with u at each vertex. Then it is 

well known that 

A2 ,,1\ /\ 2 
" u - u \\ + a ( u - u , u - u ) ~ C 1 h , 

_ 2 ( ~ ~) A 2 
\\ u-u. +a u-u, u-u ~ C2h 

" " 

(9 ) 

(10) 

where Cl and C2 are positive constants which are independent of 

h([2],[6]). 

On the other hand, from the expansion we have 

where wn is bounded. Therefore, from (2) it holds that 

(DtDr Un ;¢')=(a 2un/a t 2 J)+S6t 2 (DtDt a2un/at2 ,'~)+( 6twn :~) 

n 1\ nl\ 2 n " 2 n ") =-a Cu ,q») + (f ,<1»-S6.t a (Dt Dt u ,<1» +S6.t (Dt Dt f , <1> 

for each 

Then we have 

( An A. ) ( -n - (An 1\ 2 I\n A a DtDtu ,<1»+(l-a DtDtu ,<t»+a u ,<1»+S6.t a(DtDtu ,<1» 

.... n 1\ -n - An ,.. 2 An /\ n A 
=aCDtDru ,<1»+(l-a)(Dt Dt u ,<t»+a(u ,<1»+S6.t a(DtDtu ,<1»-(D t Dt u ,<1» 

-a(un,~)_S6.t2a(D D_Un,~)+(fn,f)+S6.t2(D D_fn,~)+(6.twn,~) 
t t t t 

( . An n ~ (-n n -) ( )( n - ~ (11) =a DtDtCu -u ),~)+(l-a)CDtDt u -u ),<1> + I-a DtDtu ,<1>-<1»+ 

a(Gn-un,~)+S6.t2a(DtDt(Gn-un),1)+a(fn,~)+(1-a)(fn,~)-

(I-a) (fn ,-;P)+(l-a) (fn ,¢)+S~t2(DtDtfn ,~)+(~twn ,~) 
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Plitting 

obtain 

""n An An e =u -v., 

for each - h" -¢ €: Xo' ¢ tv ¢ . 

-n -n ... n ( 6 ) () e =u -v ,and substracting from 11 , we 

J\n n 1\ 2 "n n " n - " +a(u -u ,¢)+B~t a(DtDt(u -u ),¢)-(l-a)(f ,¢-¢) 

2' nA nA 
+B~t (DtDtf ,¢)+(~tw ,¢) 

for each ~ E- yg, ¢" xg, ¢ N$. 

Before stating our results, we mention some lemmas which are 

useful. 

Lemma 3. (~uj i i [ 2 ] ) F "w L yh or any 'I; and - h '" -wE-X (w ~ w), there 

exists a constant .c which is independent of h, such that 

Lemma 4. For anyCE-yh and wE-Xh (~l'Vw), it holds that 

Proof. Let. ~ 
h . '" m+l /'to. 

be an m-simplex of T. We put w=ri=lwi¢i' and 
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_ m+l -
w=Lt=lwi~i. Then we have 

"w\l~ =/ w2dx ... dx = vol(tJ,) Lm+l 2 
u tJ, 1 m m+l i=lwi' 

II Awl(~ / A2 d vol(tJ,) (2~m+1 2 2~ m ~ m+l ) 
u = tJ,w dx l ··· xm = (m+l)(m+2) ~i=lwi + ~i=l~j=i+lwiWj 

vol(tJ,) m+l 2 -1\2 ( ) 
~(m+l)(m+2) Li=lwi = IIw tJ,1 m+2 , 

I' w II; \("'11 2 - vo 1 ( tJ,) ~ m ~ m+ 1 ( ) 2 
u - w tJ, - (m+l)(m+2) ~i=l~j=i+l wi-wj ~O. 

The proof is complete. 

Lemma 5. For any and 

"'-constant C, which is independent of h, such that 

Proof. 
, 

From Lemma 4 and Poincare's inequality, we have 

",.. 

where CO' C are positive constants. The proof is complete. 

We now prove the following theorems which give the rate of 

convergence. 

Theorem 2. "'r -r Let {v ,v } be the solutions of (6)., If the stability 

condition is satisfied, then, for sufficiently small tJ,t, there exists 

a constant C, which is independent of hand tJ,t, such that 

where -r -r -r e =u -v . 

r=2,3,··· ,p, 
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Proof. Choosing - -n -n ¢=D e +D-e t t in (12), multiplying 

llt and summing from n=l to n=r-l, we have 

A~ 2 ) -r 2 (Ar Ar aliDte '\ +(l-a "Dte.ll +a e ,e ) 
",0 2 ) -0 2 1'\00 ",0 2 Ar Ar 2 ( ",0 ~O 

=allDte II +(1-~ IP\e 1\ +a(e ,e )-Sllt a(Dte ,Dte )+Sllt a Dte ,Dte ) 

( r "",r 0 AO r-l An n An I\n 
+a e ,lltDte )+a(e ,lltDte )+aEn=lllt(DtDt(u -u ),Dte +Dte )+ 

(1 ) 'I"r-1A ( (-n n) .n -n) r-l ("n n "n An) -a ~n=lut DtDt u -u ,Dte +Dte +En=lllta u -u ,Dte +Dte + 

Bllt2E~:~llta(DtDt(an-Un),Dt~n+Dt~n)+ (13 ) 

(1 ) 'I"r-1 ( n ( )(-n An ) ( ) r-l (n ( )(-n An» -a ~n=lllt DtDtU ,Dt+Dt e -e ) - I-a En=lllt f ,Dt+Dt e-e 

2 r-1 n An An r-l n An An 
+Bllt En=lllt(DtDtf ,Dte +Dte )+En=lllt(lltw ,Dte +Dte ). 

Then it holds that 

AO~"O aCe ,e )=0, 

and 

2 ( Ar Ar 2 Ar 2 -r 2} B II t a DE e ,Dt e ,) ~ B II t A { a n Dt e n + ( I-a) II Dt e I, , 

Sllt2a(Dt~0 ,Dt~O) ~ Bllt2A{a'\Dt~01l2+(1-a)IIDteOl\ 2} 

from Lemma 1, and 

for an arbitrary positive number E. Applying (9) and (10)~ the eighth 

and ninth terms of the right hand side of (13) are estimated by 

and 

aE r - l A t (D. D- ("n _ n) D An+n-:-An) n=lu t t u u 'te t e 

r-l An n 2 r An 2 
~ a E n = III til D t Dt (u - u ) II +a E n = III t rr DE e " 

~ clh2+aEn~lllt"Dt~n'12, 

14 



The tenth term of the right hand side of (13) is estimated by 

r-l ,..n n An An) r-l (( ) An n) An) En =lf.:.taCu -u ,Dte +Dte =-En =lf.:.ta Dt+D~ (u -u ,e 

+ CAr r Ar-l)+ ("r-l r-l Ar) C .... O 0 1\1) ( .... 1 1 1\0) a u -u ,e a u -u ,e -a u -u ,e -a u -u ,e 

r-l ,..n n An "'r r ",r CAr r Ar) =-En =lf.:.taCCDt +Dt )(u -u ),e )+aCu -u ,e )-a u -u ,f.:.tDte + 

C·"r-l r-l .... r) C AO 0 AtD "'0) a u -u ,e -a u -u ,0 t e 

1 r-l · .... n n .... n n 1 r-l An "n 
~ "2 En = 1 f.:. t a C C D t + DE ) C u - u ), ( Dt + D t ) C u - u » + ""2 En = 1 f.:. t a ( e , e ) + 

..1. aC"r _ r .... r _ r)+..L C"r-l_ r-l "r-l r-l)+~aCAr "r)+ o u u ,u u 20 a u u ,u ,U IJ e ,e 

of.:.t 2 "r Ar 1 .... 0 0 ,,0 0 of.:.t 2 AO 1\0 --r- aCute ,Dte )+""""2'6 aCu -u ,u -u)+ 2 aCDte ,Dte ) 

2 1 1 ~ At· 2 2 2 
~ C3h +"2 E~:l f.:.ta(~n ,'~n)+oa(~r ,~r)+ IJ~ A{al\Dt~rll +Cl-a)nDt'ern } 

+ ogt 2 A{anDt~01l2+Cl-a)I\DteOn 2} 

for an arbitrary positive number o. The eleventh term of the right 

hand side of (13) is estimated by 

2 r-l An n An I\n 
Bf.:.t En =lf.:.ta(Dt DE (u -u ),Dte +Dte ) 

c::: 2 r-l .... n n An n 2 r (An An) 
- Bf.:.t En=l f.:.ta(DtDt (u -u ) ,DtDt Cu -u ) )+Bf.:.t En=l f.:.ta Dte ,DEe 

~c 4 hC'+Bl'I t 2 AEn~ll'1t {aIlDt~nIl2+ C l-a)I\ Dt enll C'} • 

Using Lemma 3, the twelveth and thirteenth terms of the right hand side 

of (13) are estimatea by 
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and 

(I-a) E~:i I1t (DtDtun , (Dt +Dt) (en_~n) ) 

r -1 ) n - n 1\ n ) ( r - r "r) ( r ( - r A r ) ) = -En=ll1t«Dt+Dt DtDtu ,e -e + DtDtu ,e -e - DtDtu ,l1tDt e -e 

( r-l -r Ar) ( ° -0 -"0) ( 1 -0 1\'0) + DtDtu ,e -e - DtDtu ,e -e - DtDtu ,e -e -

ol1t~ 

2 

for an arbitrary positive number o. The fourteenth and fifteenth terms 

of the right hand .side of (13) are estimated by 

Er - 1I1t(l1twn D en+D_~n)< I1t2Er-ll1t\\Wn,12+E r ~tIID_~nl,2 
n=1 .' t t - n=1 n=1 t 

~l1t2L~:il1tllwnI12+ ~ Ln:1I1t{aIlDtgn,,2+(I-a)UDtenn2} . · 



and 

2 r-l n "n "n 2 B r {II.I\n 2 )ll -nIl2} Bb.t Ln=lb.t(DtDtf ,Dte +Dte )<: C13 b.t + a Ln=lb.t 0'. Dte \\ +(1-0'. Dte ... 

Therefore, summing up these estimates, we can obtain 

.l\r 2 -r. 2 (-'\r I\r) O'.IIDt e n + ( 1-0'. ) n D't e 1\ +a e ,e 

1\ 0 2 - 0 2 2 I\r .... r 
~O'.IlDte 11 +(l-a)\\Dte \\ +C14 (h +b.t)+(s/2 +3(5)a(e ,e )+ 

max{O, ~s+ ~<5, -S}b.t2A{0'.IlDtern 2+(1-0'.)I\DterU2 }+ 

r { .... n 2 - n 2 (A n An)} 
C15 Ln =1b.t O'.UDEe II +(l-a)"Dte " +a e,e , 

that is, 

b.t 2A (m+l)(m+2) 
m 1 3<5 Arl1 2 -rI2} [ 1- --::2::--...:..;;...-----· max { 0, 2£ + 2 - B} ] { 0'. "DE e + ( I-a )1\ Dt e , 

K {m+2-(m+l)0'.} 

+(1-s/2 _3(5)a(~r,~r) 

<: (2 2 r { An 2 ) - nJ 2 (",n ~n)} -C16 h +b.t )+C 17 Ln =1b.t al\Dte 1\ +(1-0'. IIDEe I +a e. ,e 

for sufficiently small <5,. o. Then, from the stability condition, we 

have the following in~quality 

"r 2 (' . - ~ 2 '" r 1\ r O'.lI Dt e 8 + l-O'.)Il Dt e II +a(e ,e ) 

2 2 r An 2 - n, 2 An I\n 
~ClS(h +b.t )+C19 Ln =1b.t{0'."Dte II +(l-O'.)jIDte" +a(e ,e )}. 

Applying Lemma 2 yields 

"r 2 - ~ 2 I\r Ar 2 2 r O'.IIDte·1I +(l-O'.) IID't e II +a(e ,e )~ ClS(h +b.t ){1/(1-C19b.t) -I} 

c:: C (h2+b.t 2 ){1/(1-C b.t)T/b.t -I} 
- IS 19 

C T 
for sufficiently small b.t. By the fact that 1/(1-C19b.t)T/b.t---+e 19 

as b.t ~o, we have 
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From Lemma 4, we can obtain the desired inequality 

where C is a positive constant independent 0f h and ~t. This 

completes the proof. 

Theorem 3. Let {~r,vr} be the solutions of (6). If the stability 

condition is satisfied~ then, for sufficiently small ~t, there exists 
rv 

a constant C which is independent of h and ~t, such that 

r=2,3,···,p, 

"'Er r I'r where =u -v , -Er r-r =u -v . 

Proof .. Define a space L2 (n)X L2 (n), each element of which is a 

pair of functions {u1,u2}(u1,u2~L2(n»). Addition and scalar multi­

plication are defined in the obvious manner. The inner product and 

the norm on L2 (n)X L2 (n) are defined by 

[{u,v},{w,z}J = a(u,w)+(l-a)(v,z), 

1/2 ru{u,v}m = [{u,v},{u,v}] . 

Using the triangle inequality, for sufficiently small 6t, there 

exists a constant 
I"J 
C, which is independent of h and M~, such that 

m{~r,~r}m2+ru{DE~r,DE~r}m2+a(ir,ir) 

~ 211Hur _or ,ur _ur}\\\2+2I1H~r ;er Hn 2+2 UHDt (ur _~r) ,Dt (ur _ur ) H1I2+ 

2"HDt~r ,Dt er }U,2+2a (ur _or, ur _~r) +2a (~r ,~r) ~ c( h2+~t 2) 

from Theorem 2 and (9),(10). This completes the proof. 

18 



4. Numerical Experiments 

To illustrate the efficiency of our scheme, some numerical 

results are obtained for the two dimensional problem(m=2). Let 

n be a unit square domain defined by 

n: O<x<l, O<y<l. 

Example. 

2 2 au/at = lm in n, 0< t ~ (2/2, 

U(x,y,t)=O on r, 

u(x,y,O)=O (x,y)E-n, 

~tu(x,y,O)=lOO~TISin(nx),sin(ny) 

The exact solution is given by 

(x,y)~n. 

u(x,y,t)=lOOsin(nx)·sin(ny).sin«(2nt). 

The square domain is divided into uniform mesh with isosceles 

triangles(9,25 and 81 nodes). We also divide the time interval 

into 6,12 and 24 equal parts, each of which corresponding to the 

above mesh nodes. The computations were performed for the parameters 

a=O,1/2,1, and B=0~1/4,1. All the cases satisfy the stability 

condition of Qurtheorem(see Table 1). 

Table 2 and Figure 1 show the results for the value of the 

center of the square domain ~(1/2,1/2,t), compared with the exact 

value u(1/2,1/2,t)(t=12/6,f;2/4,[2/3,5[2/12,12/2). We can see that 

the GMM solutions conv~rge to the exact values w~th hand 6t. In 
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particular, the case of a=1/2 shows better agreements with the 

exact values than the other cases of a=O and a=l. 

All the computations are performed by the single precision 

arithmetic on FACOM 230-28 computer in Ehime University. 

Table 1. Mesh ratio 

mesh 4Im+2-{m+12a} h lit Jl-48·11t/K (node) a K 
Cm+l) Cm+2)A m 

~ [2 J2 .ll.. 9 0 1(1-4 8 )/9 jC4-3a )/6 2 -4- 12 

II lL 1L 12 25 0 /Cl-48)/9 I (4-3a)/6 4 8 24 

II ./2 12 12 81 0 /(1-4 8)/9 J C4-3a)/6 -8- 16 48 
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Table 2. The results for Example. 

t " 

S mesh a. 
(2/6 .[2/4 .(2/3 5.{2/12 [2/2 

~ 
0 95.20 120.73 124.31· 105.29 67.12 

0.5 92.75 111.94 105.55 75.03 27.36 
1 88.61 97 .59 76.55 31.95 -22.48 

II 
0 89.30 106.35 97.80 65.70 17.80 

1 0.5 87.91 102.10 89.52 53.46 3.35 
1 86.13 97.02 80.14 40.18 -11.71 

II 
0 87.32 101.68 89.53 54.05 4.48 

, ,'" ~, - ... . . 
-- - 0.5 86.90 100.45 87.17 50.63 0.56 

/ 1 86.46 99.14 84.72 47.16 -3.40 

~ 
0 93.70 115.31 112.64 86.26 41.72 

0.5 90.28 103.29 87.81 48.10 -4.87 
1 83.78 81.68 46.91 -6.62 -57.50 

II 
0 . 88.59 104.17 93.48 59.24 10.06 

1 0;5 87.05 99.54 84.58 46.29 -4.83 "4 . 
1 85.03 94.07 74.65 32.10 -20.68 

II 
0 87.11 101.06 88.34 52.31 2.48 ~. . 

/'.'. . .. 
.. ' 0.5 86.69 99.80 85.94 48.84 -1.47 O'. -, 

86.23 1 98.46 83.46 45.33 -5.48 

~. 
0 93.08 113.12 108.02 78.92 32.28 

0.5 89".21 99.62 80.52 37.56 -16.53 
1 81.45 74.34 34.19 -21.16 -67.10 

II 
0 88.34 103.40 91.97 56.99 7.42 

o . 0.5 86.74 98.63 82.85 43.80 -7.61 
1 84.63 93.07 72.69 29.19 -23.69 

II 
0 87.04 100.85 87.94 51.72 1.80 

- ', . .;' -. .- --' . , . ':.' 
86.61 85.52 48.24 / - - - - ( , 0.5 99.59 -2.15 , . .. .-. 

86.15 98.22 83.04 44.69 -6.17 / / . 1 

exact 86.60 100.00 86.60 50.00 0.00 
1 ' I I I I 
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Figure 1. Convergence for the values of the center 
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On the explicit finite difference 

approximation of the Navier-Stokes 

equation in a non cylindrical domain 

By T~asa- J\ki NAKAMURA 

Introduction 

This paper concerns the numerical method of the 

Navier-Stokes equation in a region with boundaries which 

may vary as ~he time t varies. We restrict the case of 

2-dimensional space variable. H. Fujita and N. Sauer established 

the existence and the uniqueness of the weak solution of 

this problem by the penalty method in [3J. ,We adopt this 

method to treat the m?ving boundaries. R. Temam introduced 

a method to approximate the Navier-Stokes equation with the 

equation of Cauchy-Kowalevskaja type in [5J. His method 

has the practical importanc~ to treat the nonlinear term 

U·Vu ano the condition div u = O. So we use a discrete 

ve~sion of this approximation method also. 

~he most significant feature of our finite difference 

scheme is in its .pure expliciteness. Namely we can get 

the numerical solution by step by step integration in time 

without the inversion of any matrix. 

In §l the result for the continuous problem will be 

summarized after preparing some notations ann terminolo~ies. 

~e will describe our scheme in §2. The stability of this 

scheme will be investigated in §3. And finally the con-
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vergence of the approximate solution will be established 

in 54. 

§l. A summary of the continuous problem 

The sc~lar product and the norm are denoted by (.,.) 

and 1·1 on L2(G) (resp. « .,.») and 11·11 on Hb(G) ), where the 

set G is a bounded open domain in R2 with a smooth boundary· 

When it is necessary to distinvuish the set G ,they will be 

written as (·'·)G ' I ·I G ,« .,. ))G and "·.11 G. Frequently the 

direct product spaces of m-copies of L2(G) ahd Hb(G) are 

considered,which are also denoted by L2(G) and Hb(G). 

For m = 2 ,the norm of Hb(G) is taken as 
2 

II u II = ( Vu, VU ) = I l _aUj , ~j ) 
. . 1 d X i ax 1" 1,J = 
for 

The following notations are also used . 

V(G) = { u£Hb(G) ; div u =0 l 

H(G) = L2_ completion of { u£C~(G) ; div u =0 l 

Let T be a positive finite number. Consider a 

family net) , 0 ~ t ~ T, df simply connected bounded open 

domains in ~ The boundaries, r(t) = an(t), are assumed 

to be smooth. Let us write 

n = U [ttl x ntt)] 
O~t2T 

, 

r = TJ [ttl x anlt)] 
O~t~T 

( Assumption ) 

i) As t varies, rlt) changes smoothly in the sense 
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that the (t, x) -surface r is covered by ·a finite number of 

patches and in each patch, r can be represented by 

xi = ~'(t,x~) in terms of a C3-c l ass function ~ of 

2-variables under a suitable choice of coordinates (X~,x;) 

in R2 . 

ii) There exist~ a. bounded open domain B in . 
that the boundary aB is smooth, ntt)CB for all t , 

and dist ( aB,r(t) ~ 6 0 >0 for all t 

Our continuous problem is the. followinp; initial boundary 

value problem : 

,.Q.y A 

- vl1u + u·Vu + vp = f(t,x) in ~ at , 

div u = 0 in $1 , 

u = ° on r , 
A 

u(O,x).= uo(x) in $1(0). 

where u = ( ~(t,x), ~(t,x») is the flow velocity and 

p = p(t,x) is the pressure, and v is a positive constant. 

Consider the weak formulation of this problem. 

Problem 1. For given functions uoe: H(n(O) and 

f e: L2 (0,T;H(n(t))), find u e: L2(0,T;V(n(t)(\L""(0,T;H(n(t)) 

satisfying 

fT{-(u,q,t) + v« u,~)) 
° = fT(f,~)dt 

° In the above problem, 

+ b(U,U,q,)n(t)}dt 
A A 

+ (uo,q,(O») for any q, e: D ($1)' 
(J 

f E L2(O,T;H(ntt)) implies that 

f(t,x)e:H(n(t) for almost every t e: [O,T] satisfyin@; 
T ' 
Jolf(t'·)I~(t) dt < co 

The spaces: L2(0,T;v(n(t))) and Loo(O,T;H(ntt)) are 

defined analogously~ The trilinear form b(u,v,W)G is 
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defined as follows 
1 ~ 

b ( u , v , W) = -:.- L 
L i,j=l 

f av j oW 
( u i -a x ,W. - u. v . ~ j ) dx 

G i J 1 J oX i 

We use the abbreviation ~(t) for the function +Ct,x) when ~t 

is considered as an element of some function space in 

A 

x-variables. Finally 

Da(n) = {$ECoo(n) di v $ = 0, supp $ c. n, $ ( T) = 0 }. 

By some stan~ard calculation; we can conclude that the 

smooth solution of the original problem is the solution of 

Problem 1. Note that 

b(u,u,v) = (u·vu, v) if div u = o. 

It is also remarked that 

b (u, v , v) = 0 for u, v E H b (G) 

Theorem 1 . ( Fujita - Sauer [3J) 

Under (Assumption ), there exists a unique solution of 

Problem 1 . 

§2. The expli.cit finite difference scheme 

The mesh size of space variables and of time variable 

are denoted by h anG k respectively: 

k = ilt 

Hereafter we denote by B, the set in ( Assumption ) ii) . 

We p~enare some notations and symbols. 

Rh = { MER 

Th(M,O) = 

Th(M,l) = 

, M = (mIh , m2h), miEZ } 

1 1 1 1 Th (m) = «m l - 2 )h, (m l +2")h)x «m2-2")h, (m 2+2")h); 

i=O,l~j=O,l Th(M + (ih,jh)) ; 

. whM(x) ; the characteristic funtion of Th(M) 

Vi' Vi' i = 1,2 , the forward and the backward difference 

operators: 
2'( 



-;> 

h. ) <l>tx + - <l>tx) <I>(x) - (x - h. ) 
1 V.<I>(X) 1 V. <I> (X) = = 

1 h 1 h 

h. 
. 

where = ( cij h) j -- 1,2. 
1 

, 

An open set B is approximated by the set Bh ' 

Bh = U {XE:Th(M) ; ME:Rh , Th(JVl,l) C B } 

Consider the function space 

The operator v . 
1 

is regard~~ as an operator in the space 

Vh(Bh ) by the formula: 

Viuh(X) = I. lViuh)(JVl) whM(x) .. 
rllE:B h{"\ Rh 

-Analogously we define the operator .., 
v 

i 

The functions uh and viuh ,i=1,2, have compact supports 

in B , by the definition of Vh and Bh • 

be considered as functions defined on R2 . 

Hence they will 

The following scalar products and norms are introduced on 

the space Vh 

(uh,vh)h = fB uh(X)vh(X) dx, IUh'h 

tl uh,vh )) = I J. (V.Uh(X»(ViVh(X»dX 
h i=l B 1 

II Uhl~= (( uh,uh)~J 
'I'he suffix h of these scalar products and norms will be 

omitted. 

Proposition 1 (Discrete Poincar~ inequality and its 

inverse) For any UhE:Vh(Bh ), we have 

(1 ) Iuhl < coil 1.lh II Co= diameter of B , 
-
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Define the bilinear mapping 

the trilinear form b h on VhxVhxVh by the following 

formulas : 
1 2 

(3) gh(vh,uh)o= ~1. { v· h vouoh+(vov·h)uo h + vohv.u"h } J '- i=] l l J l l J l l J . ' 

where V~~(X) = Vih(X - ~i) 

un bll (uh ,Vh ,Wh ) = (gh(Uh'Vh)'Wh ) 

Then th'~ following equalities and the estimate hold (see 

Temam [1]:0 

(5) bh(uh,vh,wh ) = ~ ~ f Uih{UivJ"hwJoh-vJ"hviWjh}dX , 
-:L,j=l 

(6)bh (uh , vh ' vh ) = 0, ) 1 1 1 

(7) Ibh(uh , Vh,wh ) I ~ luhlz-II uhli2{ II vhl! IWhl2l1whli-i 
1 1 

+ I v h I "T II v h I F II W hI! } 

Define the restrict10n operator Ph from L2(B) to 

Vh(Bh ) as follows, 

'uh (M) 1 J u(x)dx, MERh 1\ Bh Phu = uh = i)2 
Th(M) 

The fur:ctions u)h and POhE'.Th(Q(()h) Rre extended to 

the fur (~tions UL and -0 ( PhEVh Bh ) which vanish outside 

Q(O)h " For a positive inte~er N and k = TIN, , 

we put , 

fn = 1 Ink (Phf)(S)dS 
h k (n-l)k 

n = l,c:, 00 oN 

OU]' scheme is the f'ollowinp.; 
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If 

deftn~ 

(y) 

(10) 

pO = pO 
h h 

o m u h ' ... , u h 
_ m+l Un and 

1:. { m+l 
k u h . 

where 

and o m 
Ph,···,Ph d t . d th are e ermlne, en 

the formula 

, 

~ 

if (mk,M) En , ME Bh" Rh 

otherwise 

and n is a positive integer . 

This scheme is a discrete version of the following system. 

au 
- - vflu at 

1 + u·vu + 2(div u)u + nx(t,x)u + Vp = f(t,x) 

in B , 

div u + <?P 
Eat = 0 in B 

u = 0 on aB 

utO) = Uo in 1:3 

p(O) = Po in B 

In the above system B = [O,TJ x B and x(t,x) is the , 

characteristic function of B - fi. ~he functions Uo and 

Po are the natural extension of Uo and Po which vanish 

on B -n(O) . 

This system was introduced by Temam [5J to the fixed 

boundary problem. To the moving boundary problem, we can 

show the existence and the uniqueness of the weak solution, 

and the convergence to the solution of Problem 1. 
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§3. The stability of the scheme. 

lemma 1. Let K and 6 be arbitrary fixed positive 

numbers, and let N = T/k Define the quantity L1 for 

the solution u t of our scheme by the formula 

(11) L = v _ 5kS(h)2{v 2 + 21u112J _ 2k2 
1 £ , 

i = 0,1,2, ... ,N 

If the following conditions (12), (13) and (14) 

are satls.L'led, 

(l~) 0 < 0 < L1 , 0" ::: O,l, ... ,m , 

(13) 10kS(h) < KE: 

(14) 0 < 0 < 2 - 5kn 

then we have 

(1:» lum+ll + I m+ll C1 £ Ph < 
::: 

m 
( 16) k ~ II u 1112 < C2 

9"= 0 

(17) 
m 1 1 

k ~ nix u 12 < C2 
1=0 

where Cl and C2 are constants independent of £,k,n 

and h 

(Proof) Multiplying (9) by m 2u , and (10) by 
m 2p , 

and integrating on the set B ,we get the following 

two equalities. 

I U m+ 11 2 __ I um I 2 _ r' I um+ 1 _ um 12m m m 
c. + 2kv II u 1!2 + 2kn I X u 12 

+ 2k( Vpm,um) = 2k(fm+l ,um) 

, m+ I • n m 0') m+ I m m m 
£ I p - I L - £ I p ._. r - £ I p.. - - p I 2 + 2 k ( v. u ,p') = 0 

Adding these two equalities J and usinr; the relation; 
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, 

we obtain 

(18) lum+1 1 2' + e: Ipm+112 _ luml 2 _ e: Ipml 2 + 2kviluml1 2 

+ 2knlxmuml 2 

= e:lpm+l _ pml2 + lum+l _ uml2 + 2k(fm+l ,Um) 

Now we estimate the three terms in the right-h~nd side. 

From (10), it follows that 

'J I m+l ml 2 m m+l pm) £e: p - p = -2k(V·u ,p 

< 2klV o umi Ipm+l _ pml 

< 2v'2kll umll Ipm+1 _ pml 

< 2k 2 11 umll 2 + e:lpm+l _ pml2 
e: . 

Therefore it holds, 

(19) e:1pm+l _ pml2 ~ 2~211umlf 2. 

m+l m Taking the scalar product of (9) and u -u ,we have 

(20) 2lum+l _ uml = -2kv(<. um,um+l _ um» 
m m m+l m +2k b(u ,u ,u ~ u ) 

_2kn(;nUm,um+l _ urn) 

_2k(V o (um+1 _ um),pm) 

+2k(fm+l ,um+l _ urn) 

Each term in the right-hand side of (20) is majorized as 

follows , 

12kv« um,um+1 _ um»1 < 2kvll umll " um+l _ urn" 

12kb(Um,um,um+l _ um)1 

~ ~lum+J _ uml 2 + 10k2S(h)2IumI 2 11 umll 2 
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<. Note the inequalities (C:'),\.7) ) , 

12k(XmUm,um+l _ um)1 ~ ~Ium+l _ uml 2 + 5k2n21xmuml2 , 

12k(fm,um+l _ um)1 ~ ~Ium+l _ uml 2+ 5k21fm+112 , 

m+l m m 1 m+l m m 
12k(v·(u - u ),p )1 ~ 51u - u 12 + 10k2S(h)2Ip 12 , 

Substituting these estimates into (C:'O), we obtain the 

estimate <. 21) . 

(C:'l) lum+l _ uml 2 < 5k 2S(h)2{v 2 + 21um12 }11 umll 

+ 5k2n21xmuml 2 + 5k2 !fm+l \2 + 10k2S(h)2IpmI2 . 

By the Schwarz' inequality and the inequality (6), 

it holds that 

(C:'2) 

The 

I C:'k(fm+l ,.um) I ;; kv II umll 2 + k"CO I fr.1+112 .. 

inequality (18) and.the estimates (19), (21) and 

(C:'2) 

(23) 

imply the estimate (C:'3). 

um+l _ urn + (2 _ 5kn)knixmvrn l 2 + L kll urn II 2 
m 

;; (5k + g6)klfrn+1 12 + 10k2S(h)ZlpmI2 , 

where Urn = luml 2 + £lprn l 2 

Adding the inequalities (23) for m = 0,1, ... ,£ 

we obtain 

£ £ 
U£+l + (2 - 51.<:n)k ~ nl xrnuml 2 + k L L 1\ urn II 2 

m=O rn=O rn 

where M = k(5k 
£ 

Q, 

;; M£ + Kk I urn 
m=O 

+ Q.O) I I f m+ 112 
". m= J 

, 

Hence it follows from the conditions (12), (13) and 

(14) that 
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U.f/,+l + .f/, m m .f/, 
(24 ) ok L nix u 12 + ok L II uml1 2 

m=O m=O 
.f/, 

< M + Kk L urn = .f/, 
m=O 

Let 

(25) tV! = ( 5T + cn) J~ If (t) 12dt + luOl 2 + v 

If e: < 1, it holds 

M.f/,<M, .f/,=l, •.• ,N 

Since 0 > 0 , the inequality (24) implies 
.f/, 

U.f/,+l ; M + Kk L Urn 
m=O 

Hence we obtain 

U.f/,+l ; Cl= Me kT 

I pO 12 

'l'his, estimate and the inequality (24) • imply the 

estimates (16) and (17). q.e.d. 

Theorem 2. Consider the condition 

where M is determined by (25). 

If the conditions (13),(14) and (26) are satisfied, 

we have the following estimates with some constants C1 and 

C2 independent of e:,k,n and h • 

(27) lu.f/,12 + e: lp t l2 ; C1 ,.t = O,l, ... ,N , 

N-l 
(2tJ) k I II u.f/,112 ~ C2 

t=o 
N-l 

(29) k L nlx.f/,u t l 2 ; C2 
R.=O 

(Proof) We can easily prove inductively that L.f/, > L ~ 0 • 

q.e.d. 

Now we introduce the linear operators We:L(H6(B),L 2 (B)), 
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QhELlVh,L2(B)) and Kh EL(V h ,L 2 (B») defined by the following 

mappings 

u = (UI,U2) ~ wU = (u u aUI dU2 aUI dU2) 1,2'ax1'axI'ax2'ax2 

Uh = (U1 h, U2 h) ~ qhuh 

= (UlhIB,U2hIP,VIUlhIB,VlU2hIB,V2UlhIB,V2U2hIB) 

Uh = (Ulh,Uih) ~ KhUh = lU 1h B'U2 h l B) 

where is considered to be defined on the whole 

R2 and its restrictions to the domain B is denoted by 

UihlB 

Consider the Vh-valued piecewise constant function Uh(t) 

on the interval [O,T) defined by the relation; 

if tE[mk,(m+l)k), m = O,l, ... ,N-l 

Using these concepts, we can interprete ~heorem 2 as follows. 

'l'heorem 3. 

If the parameters E,h,n and k satisfy the conditions 

(13),l14) and (2b), then the families of functions, {qhUh}' 

{ In '11 Xh uh } and { K hUh J, remain bound.ed in the space 

L 2(O,T;L 2(B)), and the family of functions, t KhUh }, 

remain bounded in the space Loo lO,T;L 2lB) . Namely, ~huh' 

KhUh , and InKhXhuh are L2(O,T;L2(B»)-stable and KhUh 

is L~lO,T;L2lB)-stable. 

§4. The convergence of the approximation 

The cohv~rgence of the approximate solution uh(t) 

to the solution of Problem 1 will be shown in this section. 
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Namely we have the fol~owing result. 

Theorem 4. 

There exists a function w£L"'(O,T;L2(B») ('\ L2 (O,T;HO(H» 

such that 

* OJ 

c:~o ) Khuh -+ w in w -1 (0,T;L 2 (B» , 

(31) qhUh -+ <P in ,w -L2(O,T;L2(B» , 
where <P = ww~ as the set of parameters (h;k,£,n) satisfying 

the conditions (13), "(14) and (26), tends to (0,0,0,00), 
~ 

The restriction u = WIQ is the solution of Problem 1. 

To 'prove this theorem, first we extract the subsequence 

from the sequence {Uh }. This subsequence, also denoted 

for simplicity, may be assumed to satisfy 

t~e conditions(30) and (31) according to Theorem 3. 

Since v.u'h 
1 J 

it holds that 

converges to ~Wj in the distribution sense, 
aX i 

<p = wW To complete the proof of 

Theorem 4, we need two lemmas. 

Lemma 2. The function w satisfies the fol~owing three 

conditions . 
(32) w£Hb(J3) , 

(33) div w = ° , 
A 

(34) wlE = ° 
Following to the treatment of J.Cea L2], we introduce 

the restriction operator 

Yh:C~(B)(\V -+ Vh defined by the re~ations 

(35) Yhv = vh = (V 1h ,v 2h ) 

1 
1 I(m z+2-)h 

V1h(M) = h 1 vl(mlh;X2)dx 2 ' 

(m2""2)h 
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· 1 
V2 (M) = --h h 

'l'his operator transforms the solenoidal function to 

the discretely 
2 

solenoidal function. Namely, we have 

(3b) t v.v· h i=1 l l 
= V·v = 0 

h 

Let us define the piecewise costant functions ~k(t) , 

and fh(t) ,for ~ECoo(O,T) with ~(T) = 0, and for 

f(t) in Problem 1 by the relations, 

~k(t) = ~m = ~(mk) ,and fh(t) = f~ , if t [mk,(m+l)k), 

respectively. 

Lemma 3 Fix vEC~(B) (\ V and $£Coo(O,T) with ~(T) = O. 

Assume that supp(~v) C Q, then we have the following relations, 

N .m m-l fT ~k(t+k) - ~k(t) 
( 37 ) t k ( u~, ~ - ~. v h) = 0 ( uh ( t + k) , k . v h ) d t 

m=l k 

(3~) 

(39) 

(40) 

(41) 

(42) 

~ m-I m-l 
Y L k « u , ~ v h» = 
m=l 

JT(W'~~V)dt 
o 

vI:« Uh(t)'~k(t)Vh)) dt 

T 
-~ \) J «( w,~v» dt 

o 

, 
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(Proof of Theorem 4 ). According to lemma 4.5 of Fuj ita-Sauer, 
A A 

lemma 2 implies that u = WI~EH;(~). Since u h is the 

solution of (9), we have the following equality (44), 

noticing the ;elations (41) and (42) • 

f
T ~k(t+k) - ~k,t) 

(44) - (uh(t+k), vh)dt 
o k 

+ "f
T 

« uh'~kVh» dt + IT bh(fh'~kVh)dt 
o ' 0 

= (u~,~(O)vh) + fT (fh'~kVh)dt 
. 0 

Passing to the limit process, we have the following 

equality (45) by lemma 3. 

A " 

is dense in D' (~), 
a 

the equality (45) implies that u is a solution of 

Problem 1. The conver~ence of the whole sequence is followed 

from the uniqueness of this solution. 

(Proof of Lemma 2) 

From Theorem 3, we have 

(4b) o in 
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On the other hand, the definition of X implies 
h 

a.e. (t,x) 

Using the Lebesgue's bounded convergence theorem, we obtain . 
(4'7) Khxhuh -+xw in w-L 2(U,T;L 2 (B)) . 

From the relation (4b) and (47), it follows that 
A 

XW = a ,namely wlE = a 

Let ~m = ~(mk) for ~ECoo(O,~) with ~lT) = 0 , and 

let vh = ~ V(M)whM for 
lV1EBh(\Rh 

00 

vECo(B) . From the 

equality (10), it follows that 

N-l m+l_pm N 
Ph h m 

E ~ k( ,~ vh ) = -E ~ (p~, 
m=l k m=l 

N 
= ~ k(V.uh,~mVh) 

m=l 

The last expression of this equality converges to 

J:(diV w,.v)dt as «,k,h,n) tends to (0,0,0,00) . 

On the other hand, the left hand side is majorized as follows, 

N m m-l 1 
< Cl I£T( ~ kl~~---~~---- Vh12)2 

m=l k 

Therefore 

T 
foCdiV w,~V)dt = U 

This implies that div w = 0 in the distribution sense. 

Since our subsequence {Uh } satisfies (31), it holds that 

div wEL2(0,T;L2(B)). So we have proved Lemma 2. q.e.d. 
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To 'prove Lemma 3, we need the fOllowing'lemma. 

Lemma 4. Let e be, a bounded open domain in H2 with 

a smooth boundary. Fix tD, tlE[o,T] with to < tl such 

t ha t [ t ,t ] x e c: r. ° 1 

For the set e = (to,t1Jxe ; we have 
A 

(48) Khuhle -+ wle in L2(to,tl,L2(e» 

(Proof or lemma 3) Since uh satisfies the relations (30) 

and (31), the limitting processes (37), (38), (39) and (40) 

are valid. The equality (41) follows from the equality 

(36). The equality (42) follows from the assumption that 
A 

supp (IjIv) Cr.. 

To prove (43), we may assume that supp (o/v) ~ e where 

the set e is defined in Lemma 4, because of the smoothness 

assumption on the domain r. stated in §l. Since 

A 

d (t,x)EB , converge to ljIV al1o. . to t~a v for any (t,x)EB 
xi 

, 

as h aIle": k tend to 0, Lemma 4 implies that l/)k vhuh 

and IjJk Vi vh u h converge to IjIvu .and. ta'ljJ d v u 
d~ 

respectively 

as h and k tend to U. 

Combining the convergence of IjJkvhu to ljJ~u and the 

fact that vUh converges to vw weakly in L2(0,T;L2(B»), 

we have 



Similarly combining the convergence of I/!h(ViVh)U to 

I/! ~ u and the fact that uh converges to u aX i 

strongly in J.J 2 (O,'r;L2(B» , we have 

I: IB UlbUjh~'kViVhdxdt 

rT f d -,-), J U.u.1V~' dxdt o ) B l.l· dX i 

Thus the conclusion (43) has been proved. q.e.d. 

(Proof of Lemma Ii) 

For k = TIN and an integer m ,define the function 

. 
if t [(m-l)k,mk) 

otherwise 

The function is denoted by Xk\t). 

Assume that hand k are sufficiently small, then 

we can find integers m and Q, satisfying the following 

conditions. 

r 0 ~ m <,Q, ~ N 

l mk ~ to < (10+ ~ ) k· , 

(1 - l)k < t~ ~ Q,k , 

[mk,Q,k]xe C n 
• 

Let em 1 (t) be the characteristic function of the interval , 
[mk, k) . We denote C u ,C P m,'}, h m,J/, h 

by u h ' Ph and f h , respectively. For a while, we use 

the conventional notation u , p, and f Par 11 ... "'h 

and fh respectively. 'l'he difference scherres (9) ,and (]O) 

are reWritten a~~ l'OJJO',.,;3 ; 
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(50) 

for any 1/JEVh \8 h ) 

By the est 1mate cn and Theorem 3, there exists a Vh -valued 

function get) satisfying that 

(51) bh\Uh,uh ,</» = ( g(t),</») for </>EVh ' 

and that· 

(52) II g ( t ) II ~ C II uh ( t ) II 2 , a < t < T = = 
where C is a constant independent of £, k, hand n. By the FourieI 

transformation with respect to t ,the. equalities' (4~) 

and (50) become 
A A 

(53) iT(xku,<I» + v« U,<I») + (( g,</») - (p,Vo<l» 
A m Am j/, A J/, 

= (f,</» + (uh'</»Xk - (uh,<I»X k , 

and 

(54) iTE(x kP,1/J) + (v-u,1/J) 
m Am JI, A JI, 

=E(Ph,1/J)X k - E(Ph,1/J)Xk , 

where the symbol means the Fourier image. 

Taking </>h = Xku in the inequality (53) and 1/J h = XkP 

in the inequality (~4), and adding these two equalities, we 

have 
A A A ..... ..... ..... A A 

(55) iT{ElxkPl 2 + Ixkul 2 } + v(l u,xku) + (l g,Xku)) 
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Since 
Am 

IxKlT)1 < 1 for any T and m, 
A .... '" A 

(56) ITI{lxk u l 2 + Elxkul} 

< II g II II ~ II + v II ~ 112 + I f II ~ I + t I u~ I + I uh I ) I u I 
m J/, A 

+ E U Ph I + I Ph I) I p I 

It is easy to deduce that for S >1/2 ,there is a constant 

C(S),which depends on 8 ,but not on E, k, hand n, 

satisfying that 

(57) 

On the other hand ,we can calculate as follows, 

(by the Parseval's equa1ity)-

So Theorem 3 implies that there is a constant C independent 

of £,k,h and n such that 

(58) i:l~k~12dT ~ C 

Noticing that it holds for 1 Y E (0,4')' 

ITj2Y C(y) 1 + IT I < _00 < T < 00 

I T I {3 
, 

1 + 

where C I, y) is the constant dependent on y we can , 

conclude from the estimates (:,'T) and (:,8) that 

(59) < 
C 

where C is a constant which does not depend k h on E, , and n_ 



The estimates (57) and (59) imply that the families {Uh} 

and {Wh } are bounded sets in L2(R;L2(e)6) and L2(R;L2(e)2), 

respectively. So we extract the subsequences,which are 

still denoted by {Uh } and {Wh }, suc~ that Uh converges to 

weakly to a function U inL2(R;L2(e)6), and that Wh 

converges weakly to a function W in L2(R,L2(e)2). It is 

easy to see that U = wW. 

For any .EL2(t o,t 1 ;L2(e)2),let 

otherwise 

'l'hen it holdS 

ftl(Wh'~(t»dt = 
to 

where xk(t) = xkl-t) . 

Passing to the limit in this equality, we have 

ft 1 ft 1 
lW,.)dt = (w,.)dt. 

to to -

This implies that W=w. The only remaining thing to prove 

is the strong convergence of Wh to W in _L~(to,tl;L2(e)2). 

To do so, it suffices to show that 

(6u) I = ftllxk*~ - wl2dt 
to 

since we have the estimates 

[.
1 'V 

: Ix * u - u 12 dt < 
t k h h = 
-0 

We can estimate the integral I as follows. 
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7his:.'inequa1ity holds for YdO,~) by the estimate (59). 
A 

The weak convergence of Uh to U implies that Uh(T) 

converges weakly to D(T) in L (e)6 for any T. Using the 

compactness argument due to Raviart (see Th.9.l of [4J), 

we can conclude that 

(61) 1,J ( T ) in L2 (e) for any T. 

On the other hand for Rny vEL2(El), we have 

I(Uh(T),¢) I = I i1Uh,¢eXP(-2TIitT»dt 

_ . ([IUh!2dT)~ !¢IIT 

< C I¢ I 
where C is a constant independent of h. 

The last inequality follows from the estimate (59). 

Therefore IUh(T)! is uniformly bounded,which in turn 

implies that 

(62) W(T)! is bounded uniformly in T. 

Therefore, by (61),(62) and the Lebesgue's bounded 

convergence Theorem, it holds that J
R A A 

!Wh - WI~dT tends 
-R 

to 0 as (k,h ,E,n) tends to (0,0,0, (0). 'rhus we have 

conclusion (60). q.e.d. 
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A Finite Element Approximation Corresponding 

to the Upwind Finite Differencing 

By 

Masahisa TABATA* 

§l. Introduction 

Lately it has been requested to solve numerically the diffusion 

equations with drift terms (the first d~rivative terms with respect 

to spatial vartables) in a large domain in relation to the problems 

of water pollution in coastal seas, of surface discharge of heated 

water of atomic plant~, of convection currents in a horizontal layer 

of fluid, and so on. In these fields the finite element method is 

preferred to the finite difference method. This is partly because 

the former has the pretty wide flexibility with respect to the choi~e 

of the position of nodal points, which is effective especially in 

the case where the considered domain is not a simple figure. 

When the ratio of the velocity of the drift to the diffusion 

constant is small, they are solved easily by the standard finite 

element method. However, in the case where its ratio is large, 
00 

the L-stability copdition forces us to take very small elements. 

Althou~h the same difficulty arises when the central finite difference 

is used to approximate the drift terms, it can be overcome by the 

use of the upwind difference approximation. 

In this paper we propose a finite element approximation 

corresponding to the upwind differencing. Using this approximation, 
00 

we obtain the L -stability condition which does not require that 

* Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606, Japan. 
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elements should be small, and then prove the convergence of the 

numerical solutions to the exact one. 

It often arises that an approximate solution which has negative 

parts is of no use from the physical point of view, for example, 

when the solution indicates temperature or density. Meanwhile it 

"" is ShOWll that the L -stability implies the nonnegativity of numerical 

solutions in an appropriate situation (see Corollaries 1 and 2). 

This is the reason why we esteem the L""-stability. 

Fo::-' the staticmar'y equation of the one we consider, Kikuchi [3 ] 

showed the discrete maximum principle by introducing the artificial 

viscosity term. His method is applicable to the nonstationary 

problem, but it requires that all the angle of triangular elements 

are strictly less than ~/2. In our method, ~/2 is allowable and 

it is considered that this makes triangulation of the domain pretty 

easy. 

§2. Preliminaries 

Let n he a polygonal domain in R2, r be its boundary, and T 

be a fixed positive number. We consider the following problem, 

au 
d6u (v'V)u + f in Q nx(O,TJ, 

at = - = 

(2.1) u = 0 on ~ = rx(O,T), 

u = u O in n at t=O, 

where d is a positive constant, v = (v 1 (x,yJ, v·2 (x, Y J J or 

continuous functions, and 

a a v-v = v1ax + v 2ay . 

In our problem 'v isnot so small in comparison with d. 
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LV E 
We triangulate n to obtain a set of closed trian~les{ T j }j=l 

and a set of interior nodal points { Pi}i:l ' holding the usual 

assumption that triangles do not degenerate. By interior nodal 

points we mean vertices existing in n. Define K, hand Vh as follows: 

and 

K = the mimimum perpendicular length of all the triangles, 

h = the maximum side length of all the triangles, 

Vh = { ~h ; $h £ ern), linear on each triangle, and 

$h = 0 on r}. 

With each interior nodal point Pi' we associate functions $ih and 

¢ih satisfying the following properties, 

i) 

and 

ii) ~ih 

o .. 
'[;J 

for i,j = 1, ... ,N, 

on S., and = 0 otherwisp, whprp S. is 
~ ~ 

the barycentric domain associated with P. (~0C Fig. 1 and [2J). 
I 

Define a lumping operator - from Vh into L 2 (n) as follows : 

Vh + L 2 (n), 

- N 
u'~'h' uh t+ uh = E. 1 '[;= '[; '[; 

~--s. 
'[; 

Fig. 1. Barycentric domain S1 associated with Pi' 

Now the standard expliclte finite element ap~r0xlmation scheme 

(of lumped mass type) is as follows: 
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such that 

(2.2) T 

o 0 uh(P.) = u (P.) 
J J 

for j = 1, ... , N , 

where T is a time mesh, NT = [T] , and 
T . 

a(u,v) = j au av au av } { - - + -;-y O;;-y dxdy. n ax ax . a a 

00 

To establish the L -stability of (2.2) we must employ the triangulation 

of strictly a~ut~ type, i.e., all the angles of triangles are less 

than or equal to n/2 - € , where € is small positive constant. Then, 
00 

the L -stability conditions for (2.2) are 

arid 

(2.4) 

1 K2 
T ~ 3d , 

h < 
3tan € 

• (n ) 
81-n 2" - t 

d 

Iv I 
, 

where Ivl = {v1+ V~}1/2. 

In actual problems of water pollution in coastal seas, 

d = 1 - 10m 2 / sec and I v I = o. 5 ,.., 2 m/ sec 

and, even in the pretty fine subdivision, h = 100 ~ 1000 m. From 

this example we can see that condition (2.4) is very severe in the 

practical computation. In our method, although condition (2.3) 

becomes a little restrictive, we can get rid of condition (2.4) and 

allow the triangulation of (not strictly) ;acute' type. 

We use the following notations throughout this paper: 

<i,j> = {i,i+l,i+2, .• ,j} for integers i < j , 

(u,v) = ju(x,y)v(x,y) dxdy 
Q, 
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II u 1/ 0 

and 

1/2 
= {(1A., u)} , 

Furthermore we use a as a generic constant, which does not depend 

on h, K and T and does not necessarily have the same value at each 

occurence. 

§3. An Upwind Finite Element Approximation 

In the present section we consider the case where v = v(x,y). 

Here, we introduce upwind finite elements. A triangle T. is called 
J 

a x-upwind finite element at nodal point P. if the following two 
1-

conditions are satisfied: 

i) Pi is a vertex of Tj' 

and 

ii) T.-{P.} meets the oriented half line with end point P., which 
J 1- 1- . 

has the same direction as the x-axis if v 1 (P i ) ~ 0 and has the 

opposite direction to it if v 1 (P i ) < O. 

A y-upwind finite element at Pi is defined by replacing x and v 1 (P i ) 

with y and v 2 (Pi ) respectively in the above definition. 

Now our upwind finite element approximation scheme of explicit 

type for (2.1) is as follows: 

such that 

(3.1) 
-n+l -n 

( u h - u h • -) d (n ) 
~ ~h = - a u h ' ~h + 

o u (P.) 
J 

for j e: <1, N>, 

51 



where 

7.'( J 't' N f n.-
J nT = 4i=1 ~ $ih ~ 

n n 
dU h dUh 

= -v1 (P i Ja;;- 'pi -v 2 (P i J 'ay Ipi 

x y 

p! is a x-upwind finite element at Pi' 

and 

T~ is a y-upwind finite element at Pi. 

Note that, if there exists two x-upwind (or y-upwind) finite elements 

at Pi' we choose an arbitrary fixed one of them as Ti x 

T~ 
x 

( or 

Fig. 2. X-upwind finite elements T~ when v1 (Pi) ~ 0 (left), and < 0 (right). 

Now we show the LOO-stability condition of (3.1). 

Theorem 1. Assume the triangulation is of ao~ute type and that 

(3.2) 
3d + VK 

where 

v = max _ (' v 1 (x ~ y), + 'v 2 (x ~ y), ) ,; 
(x~yhn 

Then, soheme (3.1) is LOO-stabZe and it hoZds that 

52 



(3.4) min uO + T min f 
(x,y)£n (x,y)£Q 

Proof. We begin by proving the following inequality 

( 3.5) min n + . fn n+l n 
+T fn; u . T mln . < u. < max u. max 

j£<l,N>J jE<l,N>J = 'l.- j£<l,N>J j £ < 1, N> J 

for i £ <1, N>, n £ <O,N'T'-l>. 

Fix an interior nodal point Pi arbitrarily. Substituting $h=$ih 

In (3.1), we have 

(3.6) n+1 n Td N 
a($jh' 4>ih) 

n n f"! u . = {u. .:. "M: . E. 1 u .} + T R_i(U. h ) +T , 
'l.- 'l.- J= J 1, 

'l.-1, 

'lhere M • • = 
'l.-'l.- (~ih' ~ih)· Here, we consider only the case where 

)1(Pi ),·v 2 (P 1:) ~ 0 and Pi has neighboring nodal points {Pi/ •. ,Pi(J } 

3ince, in the other cases, we can prove (3.6) in the same way. 

p. 
'l.-1 

Fig .. 3. P. and its neighboring nodal points. 
'l.-

In this case Ti is ~P.P. p. and Ti is ~P.p. P .. 
X 'l.- 'l.-3 'l.-4 Y 'l.- 'l.-4 'l.-5 

By a brief 

calculation we obtain 
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+ 

x.- X. 
t. t.S 

+ ------- u~ } , 
2M. t. 4 

t.y 

where M. = the area f Ti 
t.x o x , 

M. 
t.y = the area of Ti y , 

and (x., y.) the coordinates of P •• S~bstituting: (3.7) in (3.6), 
J J J 

we get 

(3.8) 

where 

and 

n+l u . 
t. 

= {1 ( d b )}un + 6 ... ( _ 
- t M •• aii + ii i Ek=l L 

t.t. 

2M. 
t.x 

2M. t.x 

2M. 'LX 

2M. 'Ly 

, 

, 

2M. t.y 

d 
--- a •• 
M •• t.kt. 

t.'L 

, 

, 

From the way of the choice of upwind finite elements we have 
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b. . > 0 
1"kl" 

~anwhile, it holds that 

a •. =< 0 
:11" 

for all k. 

for i # j, 

ecause the triangulation is of acute type (see [1]). Hence, the 

oefticients of u~ in (3~8) 
l"k 

'--' are nonnegative. As for the coefficient 

n f u. , we have 
1" 

a .• 
1.,1., 

+ b •• ) 
1.,1" 

sing the estimate in [2J 

a .. 
1.,1" < 

M •• 
1-1-

> 1 _ T ( 3d + V ) > o " 
K2 K 

oticing that the sum of all the coefficients of u,: and u., is equal 
" l"k 

o identity, we obtain (3.5). 

From (3.5) we have 

3.9) n+l min uh < 
(:c,y)di 

n+J. max uh 
(:c,y)di 

hich implies (3.4). 

Corollary 1. Assume the same assumption as Theorem 1. If 

o 
> 0, and u ~ 0, then 

1Jr,(JQ.f~ ':phis p~~ul t :t~ le~q from (3 ~ 8) because all the coefficients 
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of uJ are nonnegative. 

Now we proceed with the derivation of the error estimates. 

Theorem 2. 2 -Suppose that the exact solution u E C (Q) and that 

f E C1 (Q}. Then, under the same conditions as Theorem 1, hle have 

the fo t louJing es timates, 

For the proof of Theorem 2 we need the following le~~as. 

Lemma 1. Suppose the same conditions as Theorem 1 and that 

u O E C2 (n) • Then u~, the 

n+1 uh 
( 3 . 10 ) II u ~ II A ~ II 

solution of (3.1), satisfies that 

2 

Proof· We first prove the following inequality 

(3.11) max 

n+1 n u. - u. 
Put s~ = ~J _______ J~ and 

J T' 

n+1 s . 
t.. 

n s . 
J 

n+l n u. - u. 
I~J __ ~JI < c . 

T 

satisfies 

for i E <l,n>, 3 n E <0,NT-1> and e E (0,1). 

Applying Theorem 1, we have 

(3.12) max Is~1 < 
J E <1, N> J 

max Is~1 + T max 
J E <l,N> J (x,y,t) 

for n E <O,NT > • 
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By the definition it holds 

° 8. = 
1, 

d 

M •• 
1,1, 

The second term of the right of (3.13) is bounded since it approximates 

-(v'V)uO(P.). Although the first term of the right of (3.13) does 
1, ~ 

° not hold the local consistency, i.e., it does not approximate ~U (Pi) 

even if h is very small, we can show the boundedness of it. Actually, 

° expanding Uj at Pi' we have 

where 

aU~ ° 1, = (u.- x.--
1, 1, ax 

° au. 
1, 

+ ay- a(y, 

2 = (J(h i ), 

h. = the maximum side length of the triangles whose 
1, 

vertices include P •• 
1, 

Since it is obvious that 

M.. > oh. 2. 
1,1, = 1, # 

we obtain the boundedness of the first term of (3.13). Thus, (3.11) 

is valid. 

Now from (3.11) it follows that 

U n +1+ n n+l n 

lIu~IIA < II h U hl\ 
A + 

lIuh - uhll 
= A 

2 2 
n+l n 

< II Uh + 
uhll 

A + 
(J /I n+l u~11 

""" 
- uh -

° 2 K 

57 



n+1+ n 
u h u h 

IIA CT 
< II + -

2 
K 

un +1+ n 

II h 2 
u h 

II A + cv < = 

This completes the proof of Lemma 1. 

Lemma 2. 

two relations: 

i) For all ~h E Vh and n E <O,NT-l> it holds that 

-n+l -n wh - wh 
(3.14) ( 

T 

where e = eft) is a bounded function such that lei < 1. 

ii) For n € <O,NT-l> it holds that 

wn +1 + wn
h 

~ 1/ h II A + CK 

2 
(3.15) 

Then, under the condition 
KL 

T < 3d' we have the follo'IJ.,ing estimates, 

(3.16) max 
n c 

II w n II , {T E NT II n II 2 1/2 
<O.N > h 0 n=O wh A} 

~ T 

Proof. We substitute in (3.14) ~h = w~+l+ w~ and then after a 

brief calculation, we obtain 

Since v is continuous in ~, it is shown easily that 

Applying the Young's inequality to (3.17), we have 
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II W~+l~ ~ -
Td I w~+lll! + T(d/2 - E - E ' ) II W~ II! 2" 

(3.18) 

II Z;;~ II~ - Td ~ -n 112 2 ~(E')T{II -n+111 2 + II Z;; ~ II ~ } , < 
2 

wh A + C(E)Th + wh 0 = 

where E and E' are positive constants which are fixed so small that 

d/2 -E -£' > 0, and C(E) and C(E') are constants depending on E and 

E' r'especti vely. Using the following inequality in [2], 

and summing (3.18) from n = 0 to n-l, we obtain (3.16) by the 

Gronwall's inequality. 

Proof of Theorem 2. We begin by proving that u satisfy the 

equation 

-n+l -n 
(3.19) (u T- U , iii h ) 

for all 

where 

n N 
U =};·l u (P.,nT) </l'h' 

J= J J 

and 

s = S(t) is a bounded function such that lsi < 1. 

Since u is the exact solution, it holds 

(3.20) 

We observe that, for all ~h E Vh, 

(3.21) 
-n+1 -n I( u - U 

T 
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{3.22) 

and 

We prove only (3.23) hecause the others are shown in the same 

way. Now, 

(3.24) n -(R(u )~ tP h ) + ((v'V)u(nT)~ $h) 

= (R(un ) + (v'V)u(nT), ~h) + ((v·V)u(nT)J tP h - ~h)' 

The second term of the ri p:ht of (3.2 11 ) is bounded by ch I tPh 111' 

Expanding R(un ) and (v'V}u(nT) in a neighborhood of P., we have 
1, 

(3.25) 

and 

( 3.26) N -(v'V)u(nT) = E. 1 (v·V)u(P., nT) .·h + ch8 2 ' 
1,= 1, 1, 

where e. (i=1,2) are functions such that 18~1 ~ 1. Using (3.25) 
1, v 

and (3.26),'we can estimate the first term of the right of (3.24) by 

chlliiihilo' Hence, we obtain (3.23). Combining (3.20)1'V(3.23), we 

get (3.19). 

Since u~ is a solution of (3.1), w~ = u~ - un satisfies 

(3.27) 

for all $h E: Vh . 

The third term of the rIght of (3.27) is estimated as follows, 

IO··n, iii h ) - (f(nT), tPh)l = IO·n - f(nT), iii h ) + (f(nT), ib h - tPh)l 

~ c h (II f ( n T) 111 II iii h 110 + II f ( n T) II 0 II tP hill) • 

Ther~fore w~ satisfies the condition (3.14). Applying Lemme 1 and 
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Lemma 2, we obtain 

This concludes the proof of Theorem 2 since it holds 

and 

2 
< ch :I 

for 

§4. An Implicit Scheme 

In this section we consider an upwind finite element approximation 

scheme of implicit type in the case where v = v(x,y,t). Our scheme 

is as follows, 

Find n 
{U h } nE<O,NT > C Vh such that 

-n+l -n 
uh - u h 

( T ' ~h) = -d a(u~+l, ~h) + (Rn+l(u~+l), ~h) 
(4.1) 

for j e: < 1!1 N> , 

where the superscript n+l of Rn+1 indicates that upwind finite 

elements at Pi are taken according to the signature of V,(P i , (n+l)T). 

The standard implicit finite element scheme corresponding to 

(4.1) is unconditionally £2-stable but it requires condition (2.4) 

for the Lm-stability. On the other hand, we can show that (4.1) is 
00 

unconditionally L -stable. Corresponding results to Theorem 1, 

Corollary 1, and Theorem 2 are as follows: 

bl 



Theorem 3. Assume the triangulation is of accute type. Then, 

scheme (4.1) is unconditionally L~stable, i.e., for any T and K (>0), 

(3.4) is holds. 

Corollary 2. Under the same condition as Theorem 3, 

implies that 

o f, u ~ 0 

Theorem 4. 

tha t f £ C1 (Q) • 

2 -Suppose that the exact solution u £ C (Q) and 

Under the same assumption as Theorem 3, the foZlowing 

es timates ho Zd, 

We omit the proofs of the above results because they are 

a slight modification of the proofs in the previous section 

(Theorem 4 is proved without estimate (3.10)). 

§5. Concluding Remarks 

Upwind finite element approximation schemes have been discussed. 

Our method is applicable to the firat brder hyperbolic equations 
00 00 

and we can obtain easily the L -stability and the L -convergence 

if the exact solution has an appropriate smootheness. Because, in 

these problems, our scheme has local consistency. 

In §3, we introduced two upwind finite elements at Pi' i.e., 

i i 
x-upwind finite element Tx and y-upwind finite element Ty ' 

, 

But 

we may use only one upwind finite element Ti at P., which is defined c 1~ 
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as triangle T j satisfying the conditions, 

i) P. is a vertex of T., 
t J 

and 

ii) T.-{P.} meets the oriented half line with end point Pi which 
J 1.-

direction is (V 1 (Pi J, V 2 (P i JJ. 

Then, we obtain the same results (Theorems 1'V4 and Corollaries 1,2) 

with V = Ivl instead of (3.3). 

Fig. 4. Upwind finite element Ti at P .. 
~ 1, 
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