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OBITUARY
Minoru URABE

(1912-1975)

Professor Minoru Urabe died of lung cancer on September U4,
1975. He was 62 years of age.

Minoru Urabe was born in Kobe on December 2, 1912. He
graduated from the Hiroshima University of Science and Literature
(now Hiroshima University) in 1940, continued his studies in
mathematics and received the doctorate from the same University

in 1953.

In 1946 he assumed a post in the mathematical teaching
staff at Hiroshima University and became Professor of Mathematics
there in 1952. He was appointed Professor at Kyushu University
in 1963, Professor at Kyoto University (Research Institute of
Mathematical Sciences) in 1966, and in 1971 he returned to Kyushu
University as Professor, thereafter holding this post until his
death.

His researches began with geometry and subsequently extended
to functional equations, ordinary differential equations, numerical
analysis and nonlinear oscillations. The paper "Galerkin's
Procedure for Nonlinear Periodic Systems" (Arch. Rational Mech.
Anal., 20(1965), 120-152) and the book "Nonlinear Autonomous
Oscillations-Analytical Theory" (Academic Press, New York, 1967)
are among his most fundamental and well-known publications.

The outstanding research work and scholarly attitude of
Minoru Urabe constituted a source of great stimulation and
encouragement to his friends, colleagues and students, who will
always remember him with affection and gratitude.

Yoshitane SHINOHARA
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Energy Estimates for the Solution of Hyperbolic Equations

by a Finite Element Mass Scheme

: #
Kazuo ISHIHARA

Summary

The solution of the initial boundary value problem for
hyperbolic equations is approximated by the finite element
method with the generalized mixed mass scheme presented in
the previous papers([4],[5]). The stability condition is
obtained and the rate of convergence is established for the

approximation. Numerical experiments are also performed.
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1, Introduction

This paper concerns the finite element schemes applied to the

initial boundary value problem for hyperbolic type:

3°u/8t° = Au + £(x,t) X€Q, O0&Lt<T,
u=20 on T', 0<«<t<£T,
(1)
1ﬂxm)=uow) X €N,
—a—-u(x 0) = v.(x) X €8
ot 4 0 *

Here £, Ug and v, are given smdbth functions, A 1is the Laplacian
operator and x=(xl,x2,---,xm) is a point of a bounded domain @

in the m-dimensional Euclidean space R™ with the smooth boundary

r.

Let LZ(Q) be the usual real space of square integrable
functions on Q. The scalar product and the norm on L2(Q) are
denoted by (-,-) and MW-ll, respectively. Hl(Q) denotes the real
l1-st order Sobolev space. Hé(ﬂ) is the set defined by

HO(Q) = {ueH (2): u=0 on T}.
The weak solution of (1) is defined as a functiop ueHé(Q), which
satisfies the weak form:
(azu/atz,v)+a(u,v)=(f,v), 0<t<€T for each veHé(Q) (2)
where a(u,v) is given by |
a(u,v)=/o{z T ou/dx, +3v/dx, }dx,dx, - +dX .

To introduce the step-by-step methods, we set un=u(x,nAt),

n=0,1,2,-+,p. Here At 1is the time increment and p-At=T. We apply

no



to (2) the consistent mass(CM) scheme and the lumped mass(LM) scheme
with piecewise linear polynomials. Then the corresponding equations
may be written in the following forms by the step-by-step methods with

a parameter B(Z0):

A
MlDtDE§“+K$n+sAtZKDtDE$n=F“ for the CM scheme (3)
M2DtDEVn+Kﬁn+3At2KDtDEﬁ“=Fn for the LM scheme (4)

An =n
where V and V are unknown vectors, Dt and DE are forward
and backward difference operators in time defined by

ntl_ynyae,  DevP=(VR-vly/at,

n_
D .V =(V T

1_
K 1is the stiffness matrix, M1 is the CM matrix, M2 is the LM

n are known vectors.

matrix, and gn’ F
In the previous papers([4],[5]), the author presented the
generalized mixed mass(GMM) scheme for the eigenvalue and parabolic
problems. In this paper, we propose similarly the GMM scheme for the
hyperbolic problem. The equation for the GMM scheme with parameters

a and B(0OLa<€l, B20) is as follows:

. A —
{oM. +(1-a) M, }D, DeV KV +8At KD, De vV =af 4 (1-a ) F" (%)
1 2°7t7t t7t
n=1,2,++-,p-1.
For this scheme, we can derive the stability condition in the L2
sense and establish the error estimates. The GMM scheme includes

the CM scheme(a=1) and the LM scheme(a=0) as its special cases. Finally

some numerical experiments are performed.



D “tability Conditicn

Throughout this paper, we will use the same notations as the
previous paper[5]. It is assumed that the domain §© 1is the convex
polygon and the solution u of (1) satisfies certain smoothness
condition. Let Th be a triangulation of the domain as follows:

N.—
§=yak, Ai/\Aj=¢, (i%j).
k=1
Here Ak(k=l,2,--?,N) are disjoint non-degenerate m-simplicec such
that any one of its faces is either a face of another m-simplex or
else is a portion of T, and h is the largest side length of all
thhe m-simplices of o, By Pi,lsisn,(or Pi,n+1gién+J) we
denote the vertices of the triangulation Th which belong to Q(or
r).
We now define the lumped mass region B(Pi) corresponding to
h

the vertex Pi with respect to T . Let bO=Pi’ 15°° ">
h .

of T . We define the barycentric

b bm be the

vertices of some m-simplex Ak
coordinate A corresponding to the vertex bi(0.<. i<m). Then the

i
barycentric subdivision B? of Ak corresponding to Pi is defined

kK e L | =1 e
By ={x: 5 (Ao(x)/(xo(x)+AJ(X))$]. for any J l’. ,m}.
The lumped mass regilon B(Pi) is the union of Bg having Pi as
its vertex. ?iec(ﬁ) and $i(i=1,2,---,n+J) stand the functilons

which satisfy the relations:



1 PéB(Pi)

T (p)e
" {o P&B(P,)

where § is Kronecker’s delta. Define

iJ

and - Y2

¥ (et () A

(e, (2), x5,

as
h - -
X =Span[¢1,¢2,-'

Xp={F: 3ex, F=0 on

‘ ’$n+J]’
r},

h AN A
Y =Span[¢1’¢2,' "¢H+J]’

Y18={$: $€Yh, $=O on T}.

h

Every ¢€ X and QeYh can be uniquely

>
n
[ne]

where are nodal values. Two

called

is linear for each m-

(1€1,j€n+J),

simplex reT? (l€ign+d),

(1l=i< nt+d)

finite dimensional spaces

follows:

determined as

———

A
functions ¢ and ¢ are

associative and denoted by Enu@, if they have a common nodal

value at each vertex. Following to Ciarlet-Raviart{[1l] and Fujii([3],

we also introduce the parameters K and

with the triangulation TP. We denote by

dicular length of all the m-simplices of
be the barycentric coordinate of a point
to the vertex Pi‘

le} =

T p max{cos(Dki,DAj)}

1%]

o which are assoclated

k the minimum perpen-

h

T". Let X,(0£1i€m+l)

x€ A(€ Th) with respect

We associate the parameter



with
= PRI <
Dxi (axi/axl, ,axi/ax ), l<i<m+l,
<D); ,DA >
cos(DAi,DAj) 'Dxi\ [Dkﬁ

1< 1, < m+l,

where <.,.> and |- | respectively denote the Euclidean scalar
product and Euclidean norm in R™. Then ¢ is defined by

g = max g

h
AET
An acute triangulation satisfies the condition o<£0([1],[3]). We

A

will use the following notations and definitions:

K={a($i,$j)} (1€1,j< n+J) stiffness matrix,
M1={($i,@5)} (1€i,j€ ntd) CM matrix,

={($'i,?¢'j)}‘ (1€1,j<n+J) LM matrix,
M3=ocl\/ll+.(lfon)M2 (0<ag 1) GMM matrix,
'ﬁ={(f,$i)} (1€i&n+J),

F={(r,9,)) (1 1< n+J),
A _{2 (04 0)

.

m+l (o> 0).

The solutions {9%,%"} (n=0,1,---,p) of the GMM scheme are

defined with parameters o and B(0La<1l, BZ0) as follows:

N N - — N
0 (D, De9™, B +(1-0) (D, D=7, ) +a ($",8) +8At %a (D, D=9,3)
t-F t7t t"T (6)
A -—
= a (", 9)+(1-0) (£7,9), n=1,2,--+,p-1,
- - /\ — p—
e YE, Ve Xlg, N for each ¢e.Yg, ¢6X8, $~¢,
where
40_gn+J =0_yn+J
E U.O(P )d) v o= 1 1 O(P )¢i,



FLarTu () +atv (P VB, FH=200d fugte ) +atv (P )}¢i

This scheme is equivalent to the matrix expression (5). The GMM scheme
includes the LM scheme(a=0) and the CM scheme(a=1) as its special
cases. We assume that 0<al. Our results are valid for a=0 " and
3=1. In these cases we can obtain the similar results discussed in [2].
Now we shall derive the stability condition. It is well known thét

the solution u of (1) satisfies the following energy inequality:

Wou/aen? (6)+2, 2 tiausax,n® (e) -

2. .m gya PSR ST
<cy vyl +2, o, W8uy/3x,ll +_j’0llfll'd1?), 0<tL T

vhere c¢ is a pos1t1ve constant 'We say that the GMM scheme is

1

stable if the solution {¥ 4n -n}

of (6) satisfies the energy

inequality, anagolous to (7) that is,

allD- rlu2+'(:[—m)||13-- ny2 +I, 1uav "/ax M1 2

AQ,, 2 ' =0, 2 m AQ 2,-n-1 i,2
<c,{oyD V"Il +(1-—a)||Dtlv W+z, 107 /axily +Iy_JALNENTY,
’ n_—_2,3,.co’15
vhere Cy is a positive constant. The stability condition is derived

1sing the following lemmas.
emma 1. For any wWe&Y and wéX (WaAayrW), it holds that.

Ty 1uaw/axiu A{a"wu +(1-a)uwu }

vhere
Am(m+l)(m+2)

k2 {m+2—-(m+1)a}

Proof. Fujii([3]) has shown the following results:

A (m+1)(m+2)
ML WM, ah, ) € —T——— 7N
' K ’ K

A
a(w,



Combining these two inequalities yields the desired statement.

Lemma 2. Let X be the nonnegative sequence(n=1,2,+-.,p). If
'é‘zo, 0€L t£L1 and xnﬁ + Zi 1 Xy n=1,2,+++,p, then,
x, £ T/(1-8)",
and
n n _
21=ltxi.. F{1/(1-t) 1}, n=1,2,+++,p.

Proof. This lemma i$ easily proved by induction.

Theorem 1. The GMM scheme is unconditionally stable if B2z 1/4,

or stable under the condition
At <j m+2-(mtl)a | _ 2

A (m+1) (m+2) Ji:jﬁ;

if 0<B<1/h.

Proof. Choosing $=D 474D in (6), multiplying

At and summing from n=1 to nsr-1, we have

o (Il Dy l"||2-||D ‘N2y+(1- a) (D=7 Ml —||Dt?}0u y+a(37,97)-2($%,2%)
-At{a(Gr,DEGr)+a(00,DtGO)}+3At2{a(DEGr,DEQP)-a(DtGO D, %%)}
=202 1at{a (", D, ¥+ V") +(1-0) (£7,D, T 4+D T }

r-1 Ny 2 r AN, 2 r-1 Ny 2 r ' -n, 2
<ol JAtUC W +al _ AtiDzv Il +(1-a) T, 21 8the BE+(1-0)Z _,AtNDEV H
-sr-1 Ny 2 r _Ang 2 _=ny, 2

L =1Athe +Zn=1At{athv U7+ (1-a)iDgv H").

Here we have used the following identities:

g1 AN ANy _po ATy 2 A Oy 2
L= 1At(D DE Dtv +DgV )—thv i lDtv I
r-1 AN AN, _ AT _Ar A0 A0
Zn 1Ata(D DE tv +DEV )-a(Dtv ,Dtv )—a(Dtv ,Dtv ),
r-1 N p SNyog (0T 4T A0 A0,
L= lAta( t +D£v )~a(9 WV )=-a(vi,v)

at{a (¥ ,0z9")+a(3%,0,9%)}



Therefore, for an arbitrary number 57»0, we obtain

aHDaerN2+(l—a)uD- | +a(Ar Ar)+3At a(D- DEQr)

AQ AO 0

.(a“D ¢ “ +(1 a)“D u +a(v )+BAt a(D v Dgao)fa(@?,AtDEQP)+

a(¥Y,AtD "0) +I77 1Atl|fn\\ +3 T ot {aDz ¥ +(1-u)un-vnu2}
<aliD, o2 +(1-a)|ID, U2 +a($9,90 )+BAt2a(D %9,0.5%+ S a (v, 9%+
gtza(D_ ’P%Q?)+ 2(§0 .40y, At At2 a0 A0, Q 28 Lag ety
+zn£1At{a“Danu +(1-a)“DEVn“ } |
From Lemma 1, this may be.written as
ol D T NP+ (10 UDE T P+ (1= £ )2 (97, 97)
< a|D, % W2+ (1- anﬂ)-0“2+(1+ )a(AO,A0)+( B)Aﬁza(DEOr,DgOr)+
At2 (—— — +8)a (D, vO,D v )+z Atﬂfn“2+2 ilAt{a“D%an2+(1-a)“DEVnu2}
SathGOl\ +(1-a) WD, ¥ 2+ (14 £)a (30,904
max{O,—%E-—B}At A{aun%ﬁru +(1-a)UDE%ﬁ|2}4 :
(—%E +B)At2A{a“D % 2+ (1-a)U\D v0u2}+zz;iAtufnu2+
z I at{ayDg 0+ (1= a)WDz v “ra (0,81,
that is,
[1 - max{0, 2= -B}At2A1{alDz 974 2+ (1-c) Dz 7" “p+(1-£)a (37 AT
<[1+( = B)At2A]{ath$0u2+(1-a)uD u2}+(1+-----)a("0 $%y+

zrratne™Cer T At{anDE%nu2+(1—a)uDEVnn +a($7,8™)1.

Then, we can cobtain the following inequality



oDV 2+ (L-o) g 7 P42 (V7 ,97)

A
A0 O)

gsc{aunt$°u2+(l-a)uD u +a(v +z At“fnﬂz}

with some positive constant C, frbm Lemma 2, if

l

; . l-max{o0, —B}At A0,

(8)
L-{} >0
holds simultaneously. If .B>»1/4, (8) 1is satisfied for any At and
K by choosing e=—-273-. If 0<&£B< 1/4, (8) is satisfied when the

quadratic equation in €

At2Am(m+l)(m+2) ¢
1-Cmg -B)—— =1-=
' k“{m+2-(m+1l)a}

has a positive root e(0<e«?2). This 1s satisfied for any At and

k 1f B=1/4, or for the condition

At m+2-(m+l)a 2
K <1 A (m+1) (m+2) ' ,ﬁ—_ll_

if 0 B<L1/4. This completes the proof.

10



3. Rate of Convergence

This section gives the rate of convergence for the GMM scheme. In

the sequel, Cl’C2’

of h and At. Let Geyg and a‘exg be the assoclative inter-

««++ gre positive constants which are independent

polated functions which coincide with u at each vertex. Then it is

=

well known that

A
U u—ﬁ\\2+a(u—ﬁ,u—ﬁ)§ Clhz, (9)
- A
“u—uu2+a(u-ﬁ,u—ﬁ)$ C2h2 (10)

A A
where C1 and 02 are positive constants which are independent of
h([2],06]).

On the other hand, from the expansion we have

2D, Dry2u/at2+ptwh

D, D=u"=3°u/3t2+gat < Dr

tt

where w'' 1is bounded. Therefore, from (2) it holds that

(D, Dpu™,$)=(3°u"/3¢2 ) 48852 (D, Df 02u™/0t 2, )+ (atw™,3)

n

=-a(u ,$)+(f“,$)—BAt2a(Dthun,$)+3At2(DtD't'fn,Q)

+(atu™, %) for each $€Yn(CHy(R)).

Then we have

na~N

a(DtDEﬁn,$)+(1.—a)(DtD-Eﬁn,$)+a(ﬁn,$)+BAt2a(DtD-ﬁﬁ )
. -]l - 2 A
=a (D, D=0",§)+(1-a) (D D=T",F) +a (R, P +gat “a(p, D=0, ) - (D Dzu"™,9)

-a(u”,$)—BAtea(DtD.Eun,$)+(fn,$)+BAt2 (DtD.Ef“,")+( atw, 9
~a (D, Dg (B7-u™) ,$)+(1-0) (D, Dp (T"-u™) ,F)+(1-a) (D D", 3-F)+ (1)
a(@7-u™, D) +8at% (D, g (A0-u™) B)+a (£7, )+ (1-0) (£7,9)-

(1-a) (£7,8)+(1-a) (f”,$)+3At2(DtD-ﬁf“,$)+(Atwn,$)

11



for each 36 Yg, e Xg, $N$

en=hn AN, - n

Putting u-v-., e =07 , and substracting (6) from (11), we
obtain
' An N -]l - AD N 2 An A
u(DtDte ,¢)+(l-a)(DtDEe ,o)+a (e ,0)+BAL a(DtDEe ,0)
=a(DtDE(u -u ),¢)+(1-a)(DtDE(u -u ),¢)+(1—a)(DtDEu ,0-4)

+a(Q"-u", $)+8at2a (D, g (B0, $) - (1-0) (£7,3-D)

+8At2 (r{tD--xt‘rl ,$)+(Atw‘“ ,$)

for each QéYh,‘ $éXh, Py

Before stating our results, we mention some lemmas which are

useful.
. A h ’ -e h N o
Lemma 3.(Fujii[2]) For any wé€Y and wéX (w~w), there
exists a constant .c¢ which is independent of h, such that

2

A -2 m A 2
- Hw - wli“< c¢ch Zizlﬂaw/axi“ .

A —

Lemma 4. For any --'v}e yh and 'v'ié-Xh (WA W), it holds that
NOH < T < (me2) R e,

‘ ’ A
Proof. Let. A be an m-simplex of Th. We put Q=ZT:iwi¢i, and

12



W=5 m+lw ;6;- Then we have

_ vol(A) 2m+1 2

Wy =/, T0ax) e dx =R bl ST,

W2 s, WPax, - caxy = oo S v on T n I v )
2YellA) - ™2 L g/ (me2),

“W“ - “W“ (mzcl)]igrﬁz—z) Zir:lzjilz}.l(wi—wj)z?.O.

The proof is complete.

Lemma 5. For any QOGYB and w €-X (Ww), there exists a

constant 6; which 1s independent of h, such that
AW 2+ (1-c) 7T W2 Ca (it , 7).
0 0 0°"0
Proof. From Lemma 4 and Poincaré’s inequality, we have
oM 2+(1-a)lm‘ou °< (m+2)a|\’&0\\2+<m+2)(1-a)uﬁou e
=(m+2)||§«\0u2s (m+2)coa(ﬁo,'€vo)= ?:a('v?o,ﬁo)

where CO’ 6 are positive constants. The proqf is cqmplete.

We now prove the following theorems which give the rate of
convergence.

Theorem 2. Let {v',%"} be the solutions of (6). If the stability
condition is satisfied, then, for sufficiently small At, there exists
a constant 6, which 1is independent of h and At, such that

Ar 2 -

ape +(l—oc')“erl\2+auDE'érll2+(1—a)l\D— ol +zi lna’ér/axiu2

<T(at%+n?), r=2,3,+:+,p,

AT _ A A - =1 -
where ‘e =u —vr, el =0r-%".

13



N - - - ) :‘,‘
Proof. Choosing ¢= D Dggn, ¢=Dten+DEen in (12), multiplying
At and summing from n=1 to n=r-1, we have
allD | 2+ (1-a) 08U “+a (87, 8)
=0 0 . A0
=a D, & On +(1-0)D, 3% *+a (8°,27) -pat? a(Dz87,D Ty reat a(D 2%,0.2%
+a(e’,atD-2 ) +a (e, atD @O)+az At(D an un),D . My 4
t t t°t t t
r-1 -Nn n -Nn -n n AN AN
(l—a)Zn lAt(D t(u ),Dte + )+Z Ata(u -u Dte +DEe )+
2.r-1 ANl N AN, AN (13)
BAtL Zn=lAta(DtDE(u -u ),Dte +Dze )+
(1-a)27 7 iAt(Dt zu, (D, +Dg ) (8"-€") )= (1-a) 1 _ At(f , (D +Dz) (8"-8"))
2.r-1 n AN AN r-1 n AN AN
+BAL°L "Mt (D, Dz, D 874D &) 43T 1t (atw”,D, 84D 2.
Then it holds that
a(89,8%=0, a(2%,at0,2%=0,
and
BAt%a (D87, Dr8") < BAL A LaliDE T 2+ (1-0) I DB °},
Bat°a(,2%,0,8%) < Bat®atann, 8% 2+ (1-0) D, 2% °}
from Lemma 1, and
2
a(8",atD:8") ¢ < a(87,87)+ 22— AAt {a||Dz® |2+(1-a)“D%€r"2}

for an arbitrary positive number «.

and ninth terms of the right hand si

At(D D—( ul),Dt8n+D-

ol t

<ozl Z7atlD, Dy (B7-u™)i|

r

<c nfar Toatp M °,

and

14

Applying (9) and (10), the eighth
de of (13) are estimated by

an,

2 r An,, 2
+a2n=1At"DEe ]



r-1 AN n
(1-a)Z, 78t (DD z(d n_a™y ;D € 4Dz %)

r

2 -1y 2
<C,h"+(1-a)L _ AtNDEE ",

2

Thé tenth term of the right hand side of (13) is estimated by

n AN An,_ r<l AN N, An
Zn lAta(u -u,D e +Dg¥ )~—Zn=lAta((Dt+DE)(u -u ),e )
+a(ﬁr_ur,Ar 1)+a(Ar -1 ur—l,gr)_a(u —uo,el)—a(ﬁl—ul,eo)
=-zlZ7ata (D +Dz) (1"-u") &%) +a (A -u" ,87) -a (B -u", atDz8") +
a(ar—l_ur 1,8r)—a(u 0 Athao)
<350 71ata (D, +Dg) (37-u™), (D +D, ) (B7-u™))+ 4~ 201 1ata (8" ,8™)+
{%.a(ar_ur,ar )+ 26 a(Ar -1 ur-l,ﬁr—l r- 1)+6a( ,gr)+
2 2
SAt AT AT 1 A0 0 A0 O SAt A0 . A0
> a(DEe ,D%e )+-§g-a(u -u ,u -u )+-—§—— a(D Dte )
. , 2
2, 1 r-1 An An ar Ar SAt AP, 2 -y 2
SCgh™+ 51 lAta( ;€ )+sa(e” e )+ —5— A{allDg€ Il “+(1-a)NDg el }
2
+ 285 pfa afDy °+(1-0)11D, 8% °)

for an arbitrary positive number &. The eleventh term of the right
hand side of (13) is estimated by
2

r-1 An n AN AN
BAL Zn=lAta(DtDE(u -u ),Dte +D%e )
<e0t2s I ata (D, De (A7 -u"), D, D= (A"-u™))+8at%s T Ata(D-AR, DA
- n=1 t ¢ S Al v n=1 t 7t

ﬁCuhZ+BAt2AZn£lAt{oalID-Eémll2+(1—0t)I\D-ﬁ'énll2} .

Using Lemma 3, the twelveth and thirteenth terms of the right hand side

of (13) are estimated by

15



(1-0) 27 21at (D Dru”, (D, +Dg) (B7-2M))

T
= r-1 - n =n_an r 2T _Ary_ r (=r_Aar
= -X 18t ((Dg+Dg)D Dru,e )+(D Dru” ,&" -€")-(D Dyu ,AtDg (8 -€"))
r-1 gr_ar 40 20_a0 1204
+(DtDtu ,€ ) - (Dt Tu ,e )-(D DEu -2 )—
0 =0 /\0
(D, Dyu”,AtD, (8 ))

r-1 A NER ) AT
SE%FthCBh/a(e oy +c6hja( ) +C Ath[a(D- ,Dz8T) +

C8h’a(Ar e +09Ath a(D O,D a0y
5 b2 2
c2h® h
<z’ iAt{.—gE- +-g- a("rl 21y 34 ¢ 26 +-g-a(’é",'ér)}+
2.2 . 2. 2
c2h 2 Coh
(L + 285 a8, 08+ (05— +5 a8, 81
2 2 2
ch®  sat
9 n0 AQ
{ 5t T3 a(Dte ,D € )}

2
AT AP r-1 An An SAt ATy 2 ary 2
SCloh +8a (€ )+ S =L, -0ta(e,e)+ —== A{alDge | +(1-a)nDte. I

SAt ™

+ 285 afafip, 8% 2+ (1-0) (1D, 2% %)

b]

and

(1-a) £ 1At (£, (D +Dz) (2"-2"))

2
<C, h2+sa(aT,87)+ L. rillata(d" 2+ 250 A{a Dz 871 2+ (1-a)N D7 871 2
11 2 2 t t
2
+ 285 aanp, 8NP+ (1-a)1D, N7

for an arbitrary positive number &. The fourteenth and fifteenth terms

of the right hand side of (13) are estimated by

r-1 n An An 2.r-1 n, 2 r An, 2
L =1At(Atw ,D e +Dze )L AtTE _JAtIw ll T+E _,At|Dge ]
2.r-1 n,2, 1 r .ah 2
LAtz ZyAtllw T+ = anlAt{auD- ™ +(1—a)uD ]
5C12At2+-§—2 T At {aiDz 8 °+(1 ~a)|ID; & a2y,
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and

2.r-1 An 2, B r An, 2 -ny2
BALTZ _7At(D D £ D,C D%e )€ C, LAt +-&—zn=lAt{anD%e W"+(1-a)liDze .

Therefore, summing up these estimates, we can obtain

aun%e 24(1- o) WDz &7 2 ra (BT AT

AT AI’)

<ol||D 'éol|2+(1—a)“D \\ +C Ll(h +At)+(e/2 +368)a(e +

max{0, —l-+ 38

5=+ 5= -B}At A{auD 2%\ +(1—a)nD—eql }+

Cr5p2 At {anng &7 24 (1- a)nD-"“n +a (8™,8M))

that is,

2
At2A_ (m+1) (m+2)
[ 1-—F max{0, 4=+ 2% -8} 1{anDr&7N%+(1-0)NDgE N7}
kK {m+2-(m+1)al

+(1-g/2 -38)a(eF,2")

2 2
175021 68 (oD €M+ (1-a)Dg e Il “+a (87,87

2 2
scl6(h +At“)+C
for sufficiently small 6 »0. Then, from the stability condition, we
have the following inequality

a||IDg T2+ (1- u)llD 2T 2+a (87 ,27)

_<_Cl8(h2+At2)+019 LAt {alDz &% %+ (1-a) Dy 2" “+a(37,8™)} .

Applying Lemma 2 yields

alDg 877+ (1-c)1IDg 8" P+a (87,27 < €] g (nP4at%) {1/(1-C, gat) T -1}

T/At _q,

19
T/At Cio7T
— €

< C1g(h%+at2){1/(1-C, (AL)

for sufficiently small At. By the fact that 1/(1-C,,At)

19
as At ——0, we have
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aIDg &7 2+ (1-a) DB N +a (87 ,87) £ c,(nP+at?).

From Lemma 4, we can obtain the desired inequality
a8 %+ (1-0) N3 2 +a|IDg amy 2 +(1-a)l\Dg -8T1%+a (87 ,87) ¢ T(n2+at?)

where C is a positive constant independent of h and At. This

completes the proof.

Theorem 3. Let {QP,VP} be the solutions of (6). If the stability
condition is satisfied, then, for sufficiently small At, there exists

a constant C which is independent of h and At, such that
- A 2 - A
anﬁr“2+(1—a)ﬂErH2+auDEEr“£+(l—a)ﬂDEEr“2+ZifluaEr/Bxﬂl2
_’é’(h2+At2), r'=2,3,'--,p,
Ar T Ar | =r_. T

-1
where E =u -v ," E =u -v

Proof. Define a space L2(Q)x L2(Q), each element of which is a
pair of functions {ul,uz}(ul,u2G-L2(Q)). Addition and scalar multi-
plication are defined in the obvious manner. The inner product and

the norm on L2(Q)X L2(Q) are defined by
[{u,v},{w,z}] = a(u,w)+(1-0)(v,z),
Wlu, v = [{u,v},{u,v}]*/2.

Using the triangle inequality, for sufficiently small At, there

exists a constant 6: which is independent of h and At, such that
WCET, B IN%+ D ET , DEET M2+ (BT, 2T)
< 2MuT -7, uT -T2 8T, BT P+ 2D (uT-0T) , Dy (uT-TT) I+
2m{DEé 'r}m +2a (uF -0, u’-Q7)+2a (87,87 ) < T(n%+at?)

from Theorem 2 and (9),(10). This completes the proof.
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b, Numerical Experiments

To illustrate the efficiency of our scheme, some numerical
results are obtained for the two dimensional problem(m=2). Let
2 be a unit square domain defined by

N : 0<€x<1l, 0<Ly<l.

Example.
5°u/3t° = Au in @, o<t<{2/2,
u(x,y,t)=0 on T,
u(x,y,0)=0 (x,y)é-ﬂ,
%Eu(x,y,0)=100\f§ﬂsin(ﬂx)-sin(ﬂy) (x,y) € 9.

The exact solution is given by
u(x,y,t)=100sin(nx) *sin(my) sin(J2nt).

The square domain is divided into uniform mesh with isosceles
triangles(9,25 and 81 nodes). We also divide the time interval
into 6,12 and 24 equal parts, each of which corresponding to the
above mesh nodes. The computations were performed for the parameters
a=0,1/2,1, and B8=0,1/4,1. All the cases satisfy the stability
condition of our theorem(see Table 1).

Table 2 and Figure 1 show the results for the value of the
center of the square domain ?(1/2,1/2,t), compared with the exact
value u(l/2,1/2,t)(t=J§76,J§7D,IE/3,5[§712,J572). We can see that

the GMM solutions convérge to the exact values with h and At. In

19



particular, the case of 0a=1/2 shows better agreements with the

exact values than the other cases of q=0 and a=1.

All the computations are performed by the single precision

arithmetic on FACOM 230-28 computer in Ehime University.

Table 1. Mesh ratio
hes) N R A
9 G L\ L2 T | Jamsare
25 fZ |z | 42 [a-weyso | [(i-30)/6
TH L& | |[aoes | Josos
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Table 2. The results for Example.

t

B mesh o

{2/6 {274 273 | s§{2712 | {2/2

0 | 95.20 | 120.73 | 124.31 | 105.29 67.12
0.5| 92.75 | 111.94 | 105.55 75.03 27.36
88.61 97 .59 76.55 31.95 | -22.48
89.30 | 106.35 97.80 65.70 17.80
1 0.5 87.91 | 102.10 89.52 53.46 3.35
86.13 97.02 80.14 40.18 | -11.71
YYD 0 87.32 | 101.68 89.53 54,05 I, 48
] |o.5] 86.90 | 100.45 87.17 50.63 0.56
1 86.46 99.1L 8l .72 47.16 -3.140
0 93.70 | 115.31 | 112.64 86 .26 41.72
0.5{ 90.28 | 103.29 87.81 48.10 -4 .87
83.78 81.68 46.91 -6.62 -57.50
o | 88.59 [ 104.17 93.48 59.20 10.06
T 0.5| 87.05 99.54 84.58 46.29 | -L.83
1 85.03 94 .07 74 .65 32.10 | -20.68
g 87.11 | 101.06 88.34 52.31 2.U8
ol lo.s | 86.69 | 99.80 | 85.94 | 48.84 | -1.u47
' 1 | 86.23 | 98.46 | 83.46 | 145.33 | -5.48

0 93.08 113.12 108.02 78.92 32.28
0.5 89.21 99.62 80.52 37.56 -16.53
81.45 TU.34 34.19 -21.16 -67.10

0 88 .34 103.40 91.97 56.99 7.42

0. ‘711 0.5 86.74 | 98.63 | 82.85 | u43.80 | -7.61
/ 84 .63 93.07 72.69 29.19 -23.69
ganrrns 87.04 | 100.85 87.94 51.72 1.80
dal |o.5| 86.61 | 99.59 | 85.52 | 48.24 | -2.15
Qidiazr 1 | 86.15 | 98.22 | 83.04 44,69 | -6.17
exact ' 86.60 100.00 86.60 50.00 0.00
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Figure 1. Convergence for the values of the center
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On the explicit finite difference
approximation of the Navier-Stokes

equation in a non cylindrical domain

By l"asa-Aki NAKAMURA

Introduction

This paper concerns the numerical method of the
Navier-Stokes equation in a region with boundaries which
may vary as the time t varies. We restrict the case of
2-dimensional space variable. H. Fujita and N. Sauer established
the existence and the uniqueness of the weak solution of
this problem by the penalty method in [3J. LK We adopt this
method to treat the moving boundaries. R. Temam introduced
a method to approximate the Navier-Stokes equation with the
equation of Cauchy-Kowalevskaja type in [5]. His method
has the practical importance to treat the nonlinear term
u-vu and the condition div u = 0. So we use a discrete
version of this approximation method also.

I'he most significant feature of our finite difference
scheme 1is in its.pufe expliciteness. Namely we can get
the numerical solution by step by step integration in time
without the inversion of any matrix.

In §1 the result for the continuous problem will be
summarized after preparing some notations and terminologies.
We will describe our scheme in §2. 'The stability of this

scheme will be investigated in §3. And finally the con-
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vergence of the approximate solution will be established

in sb4.

§1. A summary of the continuous problem

The scalar product and the norm are denoted by (+,*)
and |+| on IXG) (resp. (( *,-)) and ||-|| on H§(G) ), where the
set G 15 a bounded open domain in R? with a smooth boundary-
When it is necessary to distinfuish the set G ,they will be
written as (+,+)q , l-|G , (( o,-»G_and H‘]|G. Frequently the
direct product spaces of m-copies of L2(G) and H}§(G) are
considered,which are also denoted by L2(G) and H}(G).

For m = 2 ,the norm of H}(G) is taken as
2

;o du,
lwli = Cvu, va) = [ (38, 2
i,j=1 i i
for u = (uy)jy_y o€ Hy (@)

The following notations are also used

V(G) { uegH}(G) ; div u =0 } )
H(G) = L2- completion of { ueCy(G) ; div u =0 }
Let T be a pcSitive finite number. Consider a
family @(t) , 0 s t £ T, of simply connected bounded open
domains in B . The boundaries, T(t) = 3Q(t), are assumed

to be smooth. Let us write

Q= U [1t} x 9(t)]
OstsT
I = U [it} x30(t)]

( Assumption )

i) As t varies, T(t) changes smoothly 1in the sense
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~

that the (t,x)-surface T 1s covered by -a finite number of
patches and in each patch, f can be represénted by
x{ = ¢(t,x5) 1in terms of a C3-class function ¢ of
2-variables under a suitable choice of coordinates (xi,xg)
in R?

ii) There egists a. bounded open domain B in R2 such

that the boundary B is smooth, @Q(t)C B for all t ,

and dist ( 3B,r(t)) 2 89>0 for all ¢

Our continuous problem is the following inftial boundary

value problem

‘%% - vAu + u-vu + Vp = f(t,x) in Q ,
div u = 0 in ﬁ ,
u =20 on f R
u(0,x).= ug(x) in  2(0).

where u = ( %(t,x), q}t,x)) is the flow velocity and
p = p(t,x) is the pressure, and v 1s a positive constént.
Consider the weak formulation‘of this problem.

Problem 1. For given functions uge H(Q(0)) and

£feL2(0,T;H(R(t))), find wueL2(0,T;V(Q(t)) AL (0,T;H(Q(L)))
satisfying
T
[ f-Ga0p) + vue) + Buw,u,000 10t
- IT(f,¢)dt + (ug,9(0)) for any ¢ e D_(a)
0
In the above problem, feL2(0,T;H(Q2(t))) implies that
f(t,x)eH(Q(t)) for almost every t e [0,T] satisfying
T .
) 2 00
[RECISIFAMNE TS
The spaces: L2(0,T;V(Q(t))) and L™(0,T;H(Q(t))) are

defined analogously. The trilinear form b(u,v,w)G is

26



defined as follows

1 2 Vs
J W
b(u,v,w) = -- ¥ J (u,z=~w, - u,v,—1 )dx
‘¢ 373=1 Ja 18xi 17 gaxy

We use the abbreviation ¢(t) for the function ¢(t,x) when it
is considered as an element of some function space in
x-variables. Final}y

ﬁc(ﬁ) = {¢eCw(§) 5 div ¢ =0, supp ¢<:§,¢(T) =0 }.

By some standard calculation, we can conclude that the
smooth solution of the original problem is the solution of
Problem 1 . Note that

b(u,u,v) = (usvu, v) if div u = 0.

It is also remarked that
b(u,v,v) = 0 for wu,veH}(G)

Theorem 1 . ( Fujita - Sauer [3])

Under ( Assumption ), there exists a unique solution of

Problem 1

§2. The explicit finite difference scheme
The mesh size of space variables and of time variable
are denoted by h and k respectively:

h = 4x1= Axp, , k = At

Hereafter we denote by B , the set in ( Assumption ) ii)
We prenare some notatlons and symbols.

R, ={MeR ;3 M= (mh , mph), meZ } ;

h
©, (M,0) = 1 (m) = ((my=2)h, (m +2)h)x ((my=2)h, (my*+2)h);
(M) =g U g T (4 (dh,gh))

,th(x) ; the characteristic funtion of rh(M) 3

vi’ vi, i=1,2 , the forward and the béckward difference

operators:



plx + B) - 9(x) _ $(x) = (x - 1,)

- _ 1
Vi¢(X) = 5 R Vi¢(X) =

where ﬁi = (8

An open set B 1is approximated by the set B H
B, = U{xerh(M) 3 MeR, , rh(M,l)CB }
Consider the function space ;
v, (By) = {u (x) = ) u, (M) w
IV[EBhl\Rh

2
. U
hM(x) ; uh(U)eR }
The operator Vi is regardéd as an operator in the space

Vh(Bh) by the formula

vyu, (x) = ) (vyu ) (M) w_ (%)

i h hM
MeBhf\ Rh

Analogously we define the operator vi
The functions Up and Viuh ,i=1,2, have compact supports

in B , by the definitionof V, and B,. Hence they will
be considered as functions defined on R?2

The following scalar products and norms are introduced on

the space Vh

(uh,vh)h = IB uh(x)vh(x) dx , Iuhlh = (u, sup); >

2
((uh,vh)%]= 121 JB(viuh(x))(vivh(x))dx ,

Fug = Cugou
The suffix h of these scalar products and norms will be

omitted.

Proposition 1 (Discrete Poincaré inequality and its
inverse) For any uhth(Bh), we have |
(1) Iuhl < Cy Huh|| , Cp= diameter of B ,
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(2) Ml Il g s lu ], s(h) = 2/2/n

2y from VhXVh to Vh ’

the trilinear form bh on thvhxvh by the following

Define the bilinear mapping and

formulas

v

Yu, 1Y% n b

v inht Vin

1 2

i
- >
where vih(x) = vih(x - hi) s

(4) bh(uh,vh’wh) = (gh(uh,vh),wh)

Vin Yi%5n+t(FiVip

Then th: following equalities and the estimate hold (see
Temam [»]).
1 ¢
(5) bh(uh,vh,wh) =5 é f uih{vivjhwjh_vjh 1"3h R
b
\ =
(6) bh(uh, Vi Vh) 0 . . . 1
z 2w, |iZ
EN RNEENEIEN
v FH v (P w3

Define the restriction operator °h from L2(B) to

‘2
&

(7) lbh(uh, Vh’wh)l £ |uh!

Vh(Bh) as follows,

_ . = 1
ppY U uh(M) o2 J u(x)dx, MeRhF\Bh
Th(M)

The furctions and pohth(Q(O)h) are extended to

U)h

the furctions u!

. _0 . .
N and phevh(Bh) which Yanlsh outside

Q(O)h . For a positive intezer N , and k = T/N,
we put ,
nk
n 1
fh = X J (phf)(s)ds , n=1,2, ...N
(n-1)k

for felL2(0,T;L2(B))

Our® scheme is the following

(8) ug = Eg )
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0 - /0
Ph = Pn

0 m 0 m :
T Uypse-esu and Py, sPh ape determined, then

h
define ag“ and p-’g” by the formula
2
1 m+1 m w = m m m
9 flu, 7 - b - LTRERE B, (U5 uy)
— m m m m+1
+ Vvp,, + nyx,u, = f. ’
1 m+1 m e m " nh h
= - = 0
(10) I { P, P, } o+ Z viu, ’
i=1
m N
where xh(M) = 1 if (mk,M)eQ , Me Bhr\Rh

0 otherwise s

and n 1is a positive integer

This scheme 1is a discrete version of the following system.

in B ,

div u f e%% =0 in B |

u = 0 on 3B ,

U(O) = EO’ in B ’
p(0) = po in B

O,Tﬂ'XB , and x(t,x) 1is the

In the above system ., B
characteristic function of - & . The functions u, and
po are the natural extension of u, and p, which vanish
on B -=0(0)

This system was introduced by Temam [5] to the fixed
boundary problem. To the moving boundary problem, we can

show the existence and the uniqueness of the weak solution,

and the convergence to the solution of Problem 1.
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§3. The stability of the scheme.
lemma 1. Let K and 6 be arbitrary fixed positive

numbers, and let N = T/k . Define the quantity Ll for

the solution uz of our scheme by the formula

_ 2k?
€ )

(11) L, = v - 5kS(h)2{v? + 2lut|2}

¢ = 0,1,2,...,N
If the following conditions (12), (13) and (L14)
are satislied,
(12) 0 <& <Ly , 0= 0,1,...,m ,
(13) 10kS(h) < Ke
(L4) 0 < 8 < 2 - 5kn
then we have

+
(15) ™+ €lp2+l| < C, ,
o 3
(16) kY |Ju”)? < cy ,
2=0

Mmoo
(17) k Inxu"|%2 g Ccp ,
2=0

where C; and C, are constants independent of e,k,n
and h . oo

(Proof) Multiplying (9) by 2u™, and (10) by 2p",
and integrating on the set B , we get the following

two equalities.

m+1|2
| oM ~ ™| 2 c~:|um+l - u™)2 4 2kv]] u™R + 2kn|x u™?
+ 2k(vp™,u™) = k(™M
vom+l m
elp 712 = e p™P - elp™ o p™2 + 2k(vad™p) = 0

Adding these two equalities , and using the relation
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2k(v-um,pm) +.2k(€pm,um) =0 ,

we obtain

(18)  [u™Hz 4 ep™TH 2 o U2 - ep™]2 + 2kf[ w2
+ 2kn|x™™|2
= e|pm+1 -pt2 + ]um+1 - um2? o+ 2K(fm+1 u™)

Now we estimate the three terms in the right-hand side.

From (10), it follows that

2€|pm+l _ pm|2 - —2k(V~um,pm+1 _ pm)
< 2k|v-u™| [p™ - ")
< 2vZk|u™) ™ - p™
2
< 2k ” um” 2 4 Elpm+l _ pmlz

€
Therefore it holds,

2
(19) ep™?t - pM|2 ¢ 2KT)) M) 2

Taking the scalar product of (9) and um+1—um , we have

(20) 2|um+1 - u™ = —2kv(( um,um+1 - u™)

+2k b(um m,um+l - um)

xmum,um+l

-2kn( ™

—2k(v-(um+‘L - um),pm)

+2k(fm+1 m+1 _ um)
Each term in the right-hand side of (20) 1s majorized as

follows ,

|2kv ( u™,u™t - WMy

m“ H um+l um”

[N

2kv || u

%lum+l - W™ 2 + 5%2v28(h)2)| u™||2?

A

|2kb(um, m’um+1 _ um)| |
M2 4 10k28(n)2|u™ 2] W™ 2

b



( Note the inequalities (2),(7) ) ;

| 2k (x ™™ um+1 - u™ | s lium+1 - w2 + 5kZn?|x™u"m|?
I2K(fm m+1 _ um)l < %_|um+l _ m|2+ 5k2‘fm+l ,
l2k(V'(um+l _ um),pm)l < _é_|um+l _ umlz + lOKZS(h)Z'pmlza

Substituting these estimates into (20), we obtain the
estimate (21).

lum+1

(21) - u™[2 < 5k28(n)2{v2 + 2|u™|2}]| W™

+ 5Kk2n2 ™™ 2 + 5k2 ™2 4 10k25(n)2 "] 2.

By the Schwarz' inequality and the inequality (6),
it holds that
(22) |zk(fm+l u™y | < kv| W) 2 + %gﬁlfm+llz
The inequality (18) and the estimates (19), (21) and
(22) imply the estimate (23).

(23) U™ o U™+ 2 - sk KW 2 + Lkl u™|2

2
< (5k + S0k e™h2 + 10k?s(h P P2,

where U™ = |um|2 + EIpml2

Adding the inequalities (23) form = o0,1,...,% s

we obtain

vt v (2 - sKn)k E nfx™"|2 + k 2 Ll u™y| 2
m=0
o
_::MQ"‘KI{EU )
m=0
where M_ = k(5k + —6) Z m+1|2 + |u%l?2 + |p%|2

L

Hence it follows from the conditions (12), (13) and

(L4) that
33



g
ey vt o4 sk
m=0 m=0

Let

(25) m = (51 + B) lef(t)l,’-dt +qul|z + [p0]?
. 0

If €

N

1, it holds

M

Since 6 > 0 , the inequality (24) implies

2
vl o m o+ gk § UM
m=0
Hence we obtain

+
u* ! s Cy= MekT o

LN

M, 2 =1,...,N

This estimate and the inequality (24) :imply the

estimates (16) and (17). q.e.d.

Theorem 2. Consider the condition
T

(26) L = v - k[55(n)24v2 + 2me*Ty + 2] 5 5 50

where M 1is determined by (25).

If the conditions (13),(14) and (26) are satisfied,

we have the following estimates with some constants C; and

C, 1independent of e,k,n and h .

(27) lull2 + e|p2|2
N
k

A

C, 5 +& =0,1,...,N ,

-1 .
(28) k3§ lu*l2 ¢

2=0

N-l o
(29) k ¥ nixu’|? g C,
2=0

(Proof) We can easily prove inductively that L > L 26

Now we introduce the linear operators weL(H}(B),L2(B)),
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qth(Vh,LZ(B)) and KheL(Vh,Lz(B)) defined by the following

mappings
= N = du) dup 3du; U
u (ulauz) P wu (ul’uZ’axlaaX1’3X233x2)
= q
Uy = (Uipsuay) = Guy

(ur [Bsuzy IB,Viuy, |B,V1uz, |B,Vou1y |B,Vouz, |B)

uy = (upsusp) »okpuy = (ugy B,uzh]B)

where u is considered to be defined on the whole

inh
R2 and its restrictions to the domain B is denoted by

u;lB .

Consider the Vh—valued piecewise constant function uh(t)

on the interval [0,T) defined by the relation ;

m
h

Using these concepts, we can interprete 'I'neorem 2 as follows.

uh(t) = u if te[mk,(m+l)k), m = 0,1,...,N=-1

''neorem 3.

If the parameters e,h,n and k satisfy the conditions

(13),(14) and (26), then the families of functions’{qhuh},

{ﬁiﬁhxhuh} and | Khuh},remain bounded in the space

L2%(0,T;L%(B)), and the family of functions, { Khuh}’
remain bounded in the space Lw(O,T;LZ(B)) . Namely, TpYp

and /HKh are L2(0,T;L2(B))-stable and kU

“h%n’ XnYh
is L”(0,T;L2(B))-stable.

§4. The convergence of the approximation
The cohvergence of the approximate solution uh(t)

to the solution of Problem 1 will be shown in this section.



Namely we have the following result.

Theorem U.

There exists a function weLw(O,T;LZ(B))/\ILZ(O,T;Hb(B))
such that

* ©
(30) ~w in w -L (0,T;L%(B))

“n"n )
(31) quu, > ¢ iIn -w -1 (0,T;L2(8))
where ¢ = Ew, as the set of parameters (h;k,e,n) satisfying
the conditions (13), (14) and (26), tends to (0,0,0,x).
The restriction u = w|§ is the solution of Problem 1.

To ‘prove this theorem, first we extract the subsequence

from the sequence {u,} . This subsequence, also denoted

h

by {u,_} for simplicity, may be assumed to satisfy

h
the conditions (30) and (31) according to Theorem 3.
Since viujh converges to %gi in the distribution sense,
it holds that ¢ = ow . To complete the proof of
Theorem 4, we need two lemmas.
Lemma 2. The function w satisfies fhe following three
conditions .
(32) weH}(B)
(33) divw=0 |,
(34) w|E = 0

'Following to the treatment of J.Céa L2], we introduce

the restriction operator

Yh:CE(B)Pﬂf > Vh defined by the relations

(35) vy v = v = (V) 5Vy) )
1 (m2+%)h
vlh(M) =5 vi(mih3xz)dx, s
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1
(ml"l'g)h

‘Vzh(M) = % , va(x,,mz.h)dx,
(my-2)h
172

This operator Yy " transforms the solenoidal function to
the discretely solenoidal function. Namely, we have

2
(36) ) v,v, = Vey =0

j=3 1 1h h

LLet us define the piécewise castant functions wk(t) ,
and f_(t) , for veC (0,T) with y(T) = 0, and for

f(t) in Problem 1 by the relations,

m

_ .m _ . _
yk(t) = ¢y = p(mk) , and Ih(t) i

, if t [mk,(m+1l)k),
respectively.
Lemma 3 Fix veCo(B) AV and $eC (0,T) with (T) = 0.

Assume that supp(yv) ¢ ﬁ, then we have the following relations,

N .m m-1 T U (t+k) - 9, (t)
m .y -y _ k K"
(37) mzlk(uh, . vh) JO (uh(t+k), - vy )dt
T
—_— J ‘(W,II).'V)dt .
0
N , T
m-1 m-1 _
(38) VI KOy - vfo« up (6) 0, (£)v, ) dt

T
— vJ « w,ypv)) dt >
0

(39)  (ul,0(0)v, ) » (ug,v(0)v)

T

(40) § k(fm,wm'lvh) = f (f, 5% v, )dt

= h?> "k h

m=1 0, m
— f‘(f,wv)at

| — m m Nomm

(41) ) k(Vp v v, ) = = ) k(P L, Viv ) =0 ,
. m=1 ’ m=1 h

(42) §1k<nx§uﬁ,wmvh) =0
m=
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N m-1 m-1 m-1 T :
(43) mzl kbh(uh suy ¥ vy) = Jobh(uh,uh,wkvh)dt
(T '
— J b(u,u,yv)dt R
0

(Proof of Theorem 4 ), According to lemma 4.5 of Fujita-Sauer,

lemma 2 implies that u = w|§sHé(Q) . Since Uy is the

solution of (9), we have the following equality (4i4),

noticing the relations (41) and (42) .

T b (B+K) = b, (1)
@ = [ e,
0 : k

vh)dt

T T
+ vJ « uh,wkvh))dt + I

b (f
0 h

0 neVrVe)dt

T
= (ul,p(0)v, ) + ]o (f

h,wkvh)dt

Passing to the 1limit process, we have the following

equality (45) by lemma 3.

T f'.l.‘ T
(45) - f (u,p’v)dt + v| ((u,yv)) dt + J b(u,u,pv)dt
.0 ‘0 0
. T
= (ug,¥(0)v) + | (f, v)dt
0

Since C?(B)C@ {wecz(O,T),w(T) = 0} 1is dense in ﬁb(é)’

the equality (45) implies that u is a solution of

Problem 1. The convergence of the whole sequence is followed
from the uniqueness of this solution.

(Proof of Lemma 2)

From Theorem 3, we have

(Le) KpXpip— O in L2(0,T;L2(B))
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On the other hand, the definition of kh implies
Xp —> X a.e. (t,x)
Using the Lebesgue's bounded convergence theorem, we obtain
' s 2 72
(47) XUy X%, in w-L (0,T;L2(B))
From the relation (U4b) and (47), it follows that

xw =0 , namely w|E =0 .

Let " = y(mk) for yeC”(0,1) with ¥(T) = 0 , and
let v, =) v(M)w for veCo(B) . From the
MeB, AR hit
h™'h '
equality (10), it follows that
+1 _m
N-1 p™ri_p N m m-1
e I k(-2—DB vy = e} o, =t )
m=1 k m=1 k
N m
= Z k(v.uh,w vy)
m=1

The last expression of this equality converges to

T
(div w,yv)dt as (e,k,h,n) tends to (0,0,0,x)
0
On the other hand, the left hand side is majorized as follows,

J_ .
_ N = N m_ m-1
ve( ¥ ke|p2|2)2( y Kli——ﬁ-—— vhlz)

m-1 %

m
|y k(p™, v -9y Vh)l
k '

1N

N m m-1 %
C; veT( § kLo ¥ v, 12)
' K

A

Therefore

T
J (div w,¥v)dt = 0
0

This implies that div w = 0 in the distribution sense.

Since our subsequence " {u satisfies (31), it holds that

h)
div weL2(0,T;L2(B)) . So we have proved Lemma 2. g.e.d.
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To prove Lemma 3, we need the following lemma.
Lemma 4. Let 6 be a bounded open domain in R?2 with
a smooth boundary. Fix tg, t1elo,T] with ty < t; such

that [t ,t Ix 8C Q

For the set 6 = [ty,t,]x6 ; we have

(48) k,u, |6 — w|e in L2(tg,t,,L%(0)) .

h

(Proof of lemma 3) Since up satisfies the relations (30)

and (31), the limitting processes (37), (38), (39) and (L0)
are‘valid. The equality (41) follows from the equality
(36). The equality (42) follows from the assumption that
supp (yv) < Q

To prove (43), we may assume that supp (yv) (_6 where -

A

the set 6 1is defined in Lemma 4, because of the smoothness
assumption on the domain @ stated in 81. Since
wkvh,and wkvivh , being uniformly bounded in k,h and
(t,x)eB , converge to v ana to ¢%;iv , for any (t,x)eB
as h and k tend to 0, Lemma U4 implies that VU
9V .

nd. to ,—>
and v ViV, b, converge tq pvu a waxju respectively
as h and k tend to 0.
Combining the convergence of V¥ v.u to ¥vu and the

k' h

fact that vu converges to vw weakly in L2(o,T;L2(B)),

h

we have

T
IO IBuihvith(wkvh)jdxdt

T
. 3 .
— u;S= u, (yv),dxdt
Io fB 1ox47J J

40



Similarly combining the convergence of wh(vivh)u to
] %% u and the fact that u, converges to u
i

strongly in L2(0,T;L2(B)) , we have

T
. Us, U, P, V.v, dxdt
IO IB ih"jh'k 1i'h

T
. J ( w2 T gxdt .
0 Jp i J'axi

Thus the conclusion (43) has been proved. g.e.d.
(Proof of Lemma !)
For k = T/N and an integer m , define the function

m
X, (t) as

xE(t) =!>1/k if t [(m—lak,mk)
0

otherwise .

The function xﬁ(t) is denoted by xk(t).

Assume that h and k are sufficiently small, then

we can find integers m and 28 satisfying the following
conditions,

( 0O <m«<,8g =< N
mk

A

to < (m+Fl)k- ,
(90 = Dk <t < 2k,

[mk,sk]xe < Q

Let Cm z(t) be the characteristic runction of the inteérval
b

and C f

C m, 2% h

[mk, k) . We denote Cm,zuh , m,lph

Uy s 5h and fh , respectively. For a while, we use

the conventional notation uwu , p, and f for Uy 5Py

by

and f_ respectively. 'he difference schemes (9),and (10)

are rewritten as 'ollows ;
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(49)  S(x;%u,0) + vi(u,0) + by (u,u,¢)
_ m m
- (fsd’) + ( uh,¢)Xk - (uh3¢)xk

for any ¢6Vh(eh)
(50> E%E(xk*p,w) + (Veu,v)

=e(pg,w)xﬂ - e(ph,w)xi

for any wevh(eh)

By the estimate (7) and Theorem 3, there exists a Vh—valued

function g(t) satisfying that

(51) bh(uh,uh,¢) = (g(t),¢) for oevV,

and that

(52) eIl zcllu i, 0zt sT

where C 1is a constant independent of €, k, h and n. By the Fourier
transformation with respect to t ,the equalities' (4Y)

and (50) become

(53) 1t(xu,6) + v((u,0) + (g,0) = (D,V+4)

_ - m “m L ~ %
= (f,([)) + (uhs¢)xk - (uh’d’)xk

b

and
(54)  ite(x,p,¥) + (Veu,¥)
=e(p2,w)x$ - e(pﬁ,w)i& )

where the symbol °~ means the Fourier image.

X W in the inequality (53) and ¥, = x, P

in the inequality (b4), and adding these two equalities, we

Taking ¢h =

have

(55) it{elxp|2 + |x0]2} + v W) + Q& xu)

2



e m * Ay°m ~oalng m * Ay’m
+ - +
(£ W)+ (u,xWxy, = (upsx )y, + e(Pp 5%, P)x,
A )
= e(Py X P xy
Since |;§(T)l <1 for any t and m,

(56) ITl{IXKu'z + elxkul}
< Meliltan+ vliwlR + 1 ellal + |+ Jug | lul
2 A
+ e([pﬁ[ + |ph|) lp| .
It is easy to deduce that for B >1/2 ,there is a constant

C(B),which depends on 8 ,but not on €, k, h and n,

satisfying that

. - . )
(57) f Uxt]2 + epxub|2) = c(s)
e K

On the other hand ,we can calculate as follows,

f |;Ka|2dt I Ialzdr = I lalsz

) -0

HA

(by the Parseval's equality)-
So Theorem 3 implies that there i1s a constant C independent
of e,k,h and n such that
(58) Jmlik&|2dr <C .

Noticing that it holds for vy e(O,%),

ITEZY = d(Y) —i*i_lll -® < T <

1+ |c]® 7

>

where C(y) is the constant dependent Oon y , we can

conclude from the estimates (b57) and (»8) that
) N <
(59) [m<1 bR gl 2 2 oC

where C is a constant which does not depend on e,k,h and n.
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- n,
*
m, ¢5n {XpUy) PY Wy

Denote Cm’zqh(xk*ah) by U, and C
The estimates (57) and (59) imply that the families {Uh}
and {W_} are bounded sets in L2(R;L2(6)%) and L2(R3;L2(6)2),
respectively. So we extract the subsequences,which are
still denoted by {Uh} and {Wh}, such that Uh converges to
weakly to a function U in L2(R3L2(6)®), and that W,
converges weakly to a function W in L2(R,L2%2(6)2). It is
easy to see that U = wW.

For any yeL?(tgy,t,3;L2{6)2),let

¢ =( v if telt,,t,]
0 otherwise

Then it holds

Jtl(w Y(e))at M *3)d
sp(t))dt = u .Y, *y)dt ,
gy b b 0%k

where xk(t) = X, (-t)

Passing to the Limit in this equality, we have

T, t

[ (W,y)dt =f (w,¥)dt

to to

This implies that W=w. The only remaining thing to prove

is the strong convergence of W, to W in .L2(tg,t;3;L2%2(0)2).

h
To do so, it suffices to show that
t, N
(60) I = I Ix, *d - w|2dt —— 0 R
i
to
since we have the estimates
1 n k m ') & i i-1
: ¥ g - u |2dt < = 24lu, 424 uo -u 2}
rtolxk h h| = j{lunl ' h1 i-é-l"l' h h |

We can estimate the integral I as follows.
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o

- w2 - °°A_A2
I [mlwh W|2dr [mlwh W|2dr

A~ oA (R~ .
- 2Y,-1 2Y w12 w2
(1 + =]2") 771 +|1] )|wh Wi2dt + Lleh W|2dr

[T|zR

A

S o1+ R2Y) 4 [3|Wh—W|2dT

R
This.inequality holds for ye(O,%) by the estimate (59).
The weak convergence of Uy to U implies that ﬁh(r)
converges weakly to U(t) in L (0)% for any . Using the
compactness argument due to Raviart (see Th.9.1 of [4]),
we can conclude that
(61) ﬁh(r) e Q(T) in L2(e) for any t.

On the other hand for any veL2(6), we have

|(6h(T),¢)| I [iUh,weXp(-ZwitT))dt

l([IUh|2dT)% le/rg

clvl

r

A

where C 1is a constant independent of h.

The last inequality follows from the estimate (59).
There fore |ﬂh(r)l is uniformly bounded,which in turn
implies that

(62) |ﬁh(r) - W(r)| is bounded uniformly in «.
Thérefore, by (61),(62) and the Lebesgue's bounded

A

R N
convergence Theorem, it holds that J ;wh - W|?dr tends
to 0 as (k,h,e,n) tends to (0,0,0, ). Thus we have

conclusion (60). g.e.d.
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A Finite Element Approximation Corresponding

to the Upwind Finite Differencing
By

Masahisa TABATA*

§1. Introduction

Lately it has been requested to solve numerically the diffusion
equations with drift terms (the first derivative terms with respect
to spatial variables) in a large domain in relation to the problems
of water pollution in coastal seas, of surface discharge of heated
water of atomic plants, of convection currents in a horizontal layer
of fluid, and so on. In these fields the finite element method is
preferred to the finite difference method. This is partly because
the former has the pretty wide flexlibility with respect to the choice
of the position of nodal points, which is effective especially in
the case where the considered domain is not a simple figure.

When the ratio of the velocity of the drift to the diffusion
constant is small, they are solved easily by the standard finite
element method. However, in the case where its ratio is large,
the Lfstability condition forces us to take very small elements.
Although the same difficulty arises when the central finite difference
is used to approximate the drift terms, it can be overcome by the
use of the upwlind difference approximation.

In this paper we propose a finite element approximation
corresponding to the upwind differencing. Using this approximation,

we obtain the Lw—stability condition which does not require that

% Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606, Japan.
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elements should be small, and then prove the convergence of the
numerical solutions to the exact one.

It often arises that an approximate solution which has negative
parts is of no use from the physical point of view, for example,
when the solution indicates temperature or density. Meanwhile it
is shown that the Lw—stability implies the nonnegativity of numerical
solutions in an appropriate situation (see Corollaries 1 and 2).
This is the reason why we esteem the Lm—stability.

For the stationary equation of the one we consider, Kikuchi [3]
showed the discrete maximum principle by introducing the artificial
viscosity term. His method is applicable to the nonstationary
problem, but it requires that all the angle of triangular elements
are strictly less than w#/2. In our method, n/2 1s allowable and
it is considered that this makes triangulation of the domain pretty

easy.

§2. Preliminaries
Let © be a polygonal domain in R2, T be its boundary, and T

be a fixed positive number. We consider the following problem,

g—“ S dbu - (0Viu + f in @ = ax(0,T),
(2.1) u =20 on I = TI'x(0,T),
u = ud in @ at t=0,

where d is a positive constant, v = (vl(x,y), dz(x,y)) or
(vz(x,y,t), vz(x,y,t)), u0= uo(x,y) and f = f(x,y,t) are given

continuous functions, and

9 9

vevV = 1)155- + '02'57 .

In our problemv isnot so small in comparison with d.
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w
We triangulate Q to obtain a set of closed triangles{ Tj}j=§

and a set of interior nodal points { Pi}iﬁl s holding the usual
assumption that triangles do not degenerate. By interior nodal

points we mean vertices existing in Q. Define «, h and v, as follows:

K the mimimum perpendicular length of all the triangles,

h the maximum side length of all the triangles,

and
Vy = L 0y 5 0y ¢ C(Q), linear on each triangle, and
¢h=00n F}.

With each interior nodal point Pi’ we associate functions ¢ih and

Eih satisfying the following properties,

i) 05 € Vh and ¢ih(Pj) = Gij for 1,j = 1,...,N,

and

i1) $ih € L2(Q), and = 1 on Si’ and = 0 otherwise, where S is

the barycentric domain associated with P; (sec Fig. 1 and [21]).

Define a lumping operator - from Vh into L?(Q) as follows

- 2
: Vh -~ L4(Q),
[V —
=7 % %n>

uhH uh = Zi

where u; is the value of u

at P..
1

A

Q
\

4N

Fig. 1. Barycentric domain Si associated with P..

Now the standard expliclite finite element approximation scheme

(of lumped mass type) is as follows:
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n B
Find { up, }"=1:--NT C 7y such that

=n+l_ =n
2.2 (“n _ “hos §,) = -d alul, 4;) - ((veV)uy, b5) + (f(nt), ¢,)

for all ¢, € Vh, n = 0,.;f,NT-1 s

0 o
uh(Pj) = u (Pj) for j = 1,...,N,

where t is a time mesh, NT = [%] , and
- 3u dv , du 3V
alu,v) = IQ {32 52 * 37 37 } dxdy
To establish the Lm-stability of (2.2) we must employ the triangulation
of strictly'aCutq‘ type, i.e., all the angles of triangles are less
than or equal to n/2 - € , where € is small positive constant. Then,

the L -stability conditions for (2.2) are

1 2
(2.3) T 233 %,
and
(2.1) n o< 3tan ¢ d ,
sin(y - ¢) vl
where |v]| = {vi+ 05}1/2.

In actual problems of water pollution in coastgl seas,
d =1~ 10 m°/sec and [v| = O.5-v.2 m/sec

and, even in the pretty fine subdivision, # = 100 ~ 1000 m. From
this example we can see that condition (2.4) is very severe in the
practical computation. In our method, although condition (2.3)
becomes a little restrictive, we can get rid of condition (2.4) and
allow the triangulation of (not strictly) ‘acute: type.

We use the following notations throughout this paper:

<ty,J> = {1,i+1,1+2,..,4} for integers { < j »

(u,v) [ ulz,y)v(z,y) dzedy for u,v € L2(Q),

Q
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1/2

I« “0 {(u, u)}

k]

au 2 duy2,1/2
Il = G315+ 1321572

and

g« w2

|«
Furthermore we use ¢ as a generic constant, which does not depend

on h, x and v and does not necessarily have the same value at each

occurence.

53; An Upwind Finite Element Approximation
In the present section we consider the case where v = v(x,y).
Here, we introduce upwind finite elements. A triangle Tj is called
a x-upwind finlte element at nodal point Pi if the following two
conditlions are satisfied:
i) P, 1s a vertex of Tj,
and
i1) Tj"{Pi} meets the oriented half line with end point P., which
has the same direcpion as the x-axis if vl(Pi)_; 0 and has the
opposite direction to it if vl(Pi) < 0.
A y-upwind finite element at Pi is defined by replacing x and vl(Pi)
with y and vg(Pi) respectively in the above definition.
Now our upwind finite element approximation scheme of explicit

type for (2.1) is as follows:

. n
Find { ”h}ne<0,NT>Ctﬁz such that
an'f'l_ an _ n n _ _
for all ¢h € Vh’ n e <0, NT'J?’
0 _ .0 .
uh(Pj) = u (Pj) for J e <1, N>,
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where

_ N no - no_
n, _ n
R(uh) = ;g Rl(uh) 0:7 >
n n
ou du
n, _ h h
Riluy) = -v,(Py)5g | ot ~va(Py) 5o | i J
x Y

Ti is a x-upwind finite element at P
and

T; is a y-upwind finite element at Pi‘
Note that, if there exists two x-upwind (or y-upwind) finite elements
at Pi’ we choose an arpitrary fixed one of them as Ti ( or Ti).

v

.

Fig. 2. X-upwind finite elements T; when vl(Pi) >0 (left), and < 0 (right).
Now we show the L”-stability condition of (3.1).

Theorem 1. Assume the triangulation is of ackute type and that

2

(3.2) T < K
3d + Vx > .

where

(3.3) V= max  _(|v (x,y)| + |vy(z,y)| ).
(xy,ylef

Then, scheme (3.1) is LT-stable and it holds that
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(3.4) min £l + 7 min f éiuZ(x,y) < max £0 + 7 mazx f

(x,y)ef (x,y)ed T (x,y)ed (x,y)e@

for ne<0,N.>, (x,yle Q.

Proof. We begin by proving the following inequality

(3.5) min «” + 1 min f° uz+1

max wu'v +t max f@
,7'e<1,ltl>‘7 je<1,N>J

je<1,N>'7 Je<l,N> J

A

A

for 7 ¢ <1,N>, n ¢ <O, Np-1>.

Fix an interior nodal point Riarbitrarily.Substituting ¢h=¢ih

in (3.1), we have

n+l _ n ., td N n n n
vhere Mii= (Eih, Eih)' Here, we consider only the case where
91(Pi),.v2(Pi) 2 0 and P, has neighboring nodal points {Piz,..,Pig }

since, in the other cases, we can prove (3.6) in the same way.

P.

vs

P,
6
P,
4
P,
)

Fig. 3. Pi and its neighboring nodal points.

i . 1 .
In this case T, is APiPi3Pi4 and Ty is APiPi4Pi5. By a brief
calculation we obtain



. yis' yi4
n, _ _ y(_ 8 4 n
(3.7) R, (uy) = v, (P o u; +
ix
J.'Bo - xn
i i
v, (P ) (=2 4"y
2M ; 4
1y
— i
where Mix = the area of‘Tx_,
- z
Miy = the area of Ty’

+ uz }
xo— xo
1,5 n }
+ ui
2Miy 4

and (xj, yj) the coordinates of Pj‘ Substituting (3.7) in (3.6),

we get
(3.8) WMo g - L a4 b ]
i1
X uik + T f: »
where
aj; = aldsys b;3)
Y, - Y.
M.
ix
yi4- L
b- . = -v (Po) s
L3L 1 "1 oM.
1
Yi- Yz
ix
Xe = X
b, ; = -v,(P,) e *
st oM.
1Yy
and
b, . =b, . =b., . =0.
1,7 1,7 Tp%

+ ;%_

6
=1

o~ L

M..

11

Frqm the way of the choice of upwind finite elements we have
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b for all k.

v
)

leanwhile, it holds that
aji 20 - for 1 # J,
ecause the triangulation is of acute type (see [1]). Hence, the

oefficients of uz in (3.8) aré nonnegative. As for the coefficient
k

n
f u, , we have

1
I"T(da-n‘f‘bl')z]—‘[(gd‘,'z)zo)
M i1 i1’ = 2 B =
i1

sing the estimate in [2]

oticing that the sum of all the coefficients of u; and uy is equal

k
o identity, we obtain (3.5).
From (3.5) we have
3.9) min ul?! + Tmin _ f(ntr) £ min _ uz+1 < max u2+1
(x,y) el (z,y) el (z,y) el T (x,y)el
< max uy o+ Tt max _ f(nt)
(z,y)e (z,y)ef
for n € <0,N,~1>,

T

hich implies (3.4).

Corollary 1. Assume the same assumption as Theorem 1. If

> 0, and 27 > 0, then

uZ(m,y) 20 for (x,y) € 8, n e <0, NT>-

Prgef. This pesult is lead from (3.8) because all the coefficients
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of uj are nonnegative.

Now we proceed with the derivation of the epyror estimates.

Theorem 2. Suppose that the exact solution u € Cz(é) and that

f € Cl(é). Then, under the same conditions as Theorem 1, we have

the following estimates,

| N 1/2
max Hﬁz - ulnd)|, , (=2 T - uemo) |y < ch.
: n=0 h A =
ne<0,NT>

For the proof of Theorem 2 we need the following lemmas.

Lemma 1. Suppose the same conditions as Theorem 1 and that
u? ¢ c?(3). Then uz, the solution of (3.1), satisfies that
" gt |
(3.10) I uh"A < | —- "A + ck for n e <0,Np-1>.
Proof. We first prove the following inequality
n+l n
U, - u,
(3.11) max | 4—I| < ¢
J e<1,N>, n €<0,Np-1> T -
n+1 n
n “j T Y n
Put " = 4L 4 , and s, satisfies
J T J
un+1 W
n+l _ n td N n h - "h

i1
+ T%{(Pi, nt+6t)

for 1 € <1,n>, n ¢ <0,NT-1> and 36 e (0,1).

Applying Theorem 1, we have

WiV
B

"l < max Isgl + T max |

(3.12) max | s -
(x,y,t) € @

je<1,0>9 T joe <1,n>

for n € <0,NT> .
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By the definition it holds

0o _ d 0 0 0
11

The second term of the right of (3.13) is bounded since it approximates
—(v-v)uo(Pi). Although the first terg of the right of (3.13) does

not hold the local consistency, 1,e., it does not approximate Auo(Pi)
even if h is very small, we can show the boundedness of it. Actually,

expanding ug at P,, we have

J 0
)
0 _ 0 Ui
aug
+ (le 1’)-5@-— + O(h ) }
0 Buz Buo aug
= (ug- 2y - Uy alls bgy) +ogge alz, dgy)
3 0
“g 2
+ 3':1;—- a(y, ¢1:h) + O(h‘l: )
2
= O(ki )s
where
h., = the maximum side length of the triangles whose

vertices include Pi’

Since 1t 1s obvious that

2
>
-Mii > Chi s

we obtain the boundedness of the first term of (3.13). Thus, (3.11)

is valid.
Now from (3.11) it follows that

n+1 n n+1 n

u + U u - U
“uZ“A : "'Jl—;———!}'“ A + "-—h——z——'—ﬂ'“ A
n+1 n
L A
2
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n+l1, 6 n

U i

P L .
n+1 n
no T U

é” 5 "A"'C”‘

This completes the proof of Lemma 1.

7y

Lemma 2. Suppose { wy satisfies the following

ns<0,l\77,>C Vh

two relations:
7) For all wh eV, and n € <0,NT-1> it holds that
-n+1 =n
Wy - Wy

(3.14) ¢ s By) = -d atuy, vy) + (RO0R), By) + cho(ne) vl

T

where 6 = 6(t) is a bounded function such that |0| 2 1.

11) For n ¢ <0,NT—1> it holds that

n+1 n
n Vp Ty
(3.15) o l, = I=—1, + ex
2
Then, under the condition T < —%3 » we have the following estimates,
N 1/2
- T 2 x4
(3.16) max NwZ"o , lwz, o HwZ” n < c{"wh“0+ h}.

n e <0,NT>

Proof. We substitute in (3.14) vy = w2+1+ wz and then after a

brief calculation, we obtain
% A 2 1y 2 2
(3.17) "w2+1ug - ”wzug = - 5% HwZ+1+ wply + 1% oy 5- Nwilg)

+ (R(u}), Bt )+ weho|uwitls Wi,

Since v 1s continuous in Q, it is shown easily that

-n+l - -n+1 -
I(R(wZ), wz+ + wh)| < c"wZ”A(”wZ "0+ "wh"o)'

Applying the Young's inequality to (3.17), we have
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+1y2 d 1 2
19,715 - 5 13,7l + <(d/z -c —e)]uyl;
(3.18)
1 -n2
<1822 - X2 a2 ¢ ere)nn? + ecenxtll BEFLE + 15715,

where € and ' are positive constants which are fixed so small that
d/2 -e -e¢' > 0, and C(e) and C(e') are constants depending on e and

e' respectively. Using the following inequality in [2],
VE -
"wh"A _5_ —;(_ "whuo s

and summing (3.18) from n = 0 to n-1, we obtain (3.16) by the

Gronwall's inequality.

Probf of Theorem_2. We begin by proving that u satisfy the

equation
an'f'l_ an _ n n _
(3.19) ( B — wh) = -d alu , wh) + (R(u ), wh) + (f(nt), wh)
+ che(nr)"whﬂl for all y, e V,

where

n _ N -n _ N <

u = Zj=1 u(Pj, nt) ¢jh’ u = Zj=1 u(Pj, nt) ¢jh s
and

6 = 6(t) is a bounded function such that |e| < 1.

Since u is the exact solution, it holds

(3.20) (2%, w) = -d alu, ¥,) - ((v:V)u, ¥,) + (fs ¥;)

for all wh € Vh'

We observe that, for all ¥y, € Vh’

-n+l =n
(3.21) e =% [ 5.) - (), v,)| < el + )|y, |
0 Y 3 (") Y/l 2 VRS

T

59



(3.22) |o(u”, v, ) = atutnt), v )| < enlvdll,
and

(3.23) |(Ru™), §,0 + ((v-Vulnt), b0 < enlvy,l,
We prove only (3.23) because the others are shown in the same
way. Now,
(3.24) (R(u"), By) + ((veV)ulnt), v,)
= (R(u") + (veV)u(nt), §,) + ((v+V)ulnt), by- ¥,).

The second term of the right of (3.28) is bounded by chlwhul.

Expanding R(u") and (v-V)u(nt) 1in a neighborhood of Pi’ we have

(3.25) R(u™) = zizl (-n-V)u(Pi, nt) $ih + ché, ,
and
(3.26) (veV)u(nt) = Zi=g (veV)u(P,, nt) $,, + ché, ,

where 6. (i{=1,2) are functions such that |ei| < 1. Using (3.25)
and (3.26), we can estimate the first term of the right of (3.24) by
chﬂ@hﬂo . Hence, we obtain (3.23). Combining (3.20)~s(3.23), we

get (3.19).

Since uZ is a solution of (3.1), wZ‘= uZ - u" satisfies
, wn+1_ w? _ ™ n -
(3‘27) ( h h s wh) = -d a(wh, 'Ph) + (R(wh), ‘Ph)

T

+ LT, B0 - (Fn), by )3+ eho(nt)fug
for all v, e V,.

The third term of the right of (3.27) is estimated as follows,

(7", V) = (f(nt), ¥)| = (7" - fnr), B0 + (F(nt), Ty- vy

<encl sl | G l, + Lol he,ly).
Therefore wZ satisfies the condition (3.14)., Applying Lemme 1 and
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Lemma 2, we obtain

",y -

This concludes the proof

[P

2

3

- u(nt) |, < ch

A

and

ch for

"un - u(nt)|

A

N
T
{T2n=0"-uz - un"A}

n € <0,N

1/2 .
ch .

A

of Theorem 2 since it holds

7

§4. An Implicit Scheme

In this section we consider an upwind finite element approximation

scheme of implicit type in the case where v = v(x,y,t). Our scheme
is as follows,
n
Find {uh} "€<0:”T><: vy such that
an+1 ah
h 7 “h - +1 +1 +1 -
|- — . B, = =d aluy’ ", 4,0 + (RUTUuT), §y)
(4.1)
+ (Fint+t), Eh)
for all ¢h € Vh s M € <0,NT—1> s
uo(P ) = uo(P ) for § € <1,N>
n'tj J d s s

where the superscript n+1 of Rn+1

elements at Pi are taken according to the

The standard implicit finite element
(4.1) 1s unconditionally L?-stable but it
for the L”-stability. On the other hand,
unconditionally L”-stable. Corresponding

Corollary 1, and Theorem 2 are as follows:

bl

indicates that upwind finite

signature of v{Pi, (n+l1)t).
scheme corresponding to
requires condition (2.4)
we can show sthat (4.1) 1s

results to Theorem 1,



Theorem 3. Assume the triangulation is of accute type. Then,
scheme (4.1) is unconditionally .Listable, t.e., for any vt and « (>0),

(3.4) is holds.

0

Corollary 2. Under the same condition as Theorem 3, f, u 0

v

itmplies that

u:(m, y) >0 for (x,yleQ , n € <0, Np>.

Theorem 4. Suppose that the exact solution u e 02(5) and
1,= . .
that f e C°(Q). Under the same assumption as Theorem 3, the following
estimates hold,

_ N 1/2
‘mazx "uZ— u(nr)"o R {rzn=g"uz- u(nr)"j} < el(h+t).

ns<0,NT>.

We omit the proofs of the above results because they are
a slight modification of the proofs in the previous.section

(Theorem 4 1s proved without estimate (3.10)).

§5. Concluding Remarks
'Upwind finite element approximation schemes have been discussed.
Our method is applicable to the first order hyperbolic equations
and we can obtain easily the Lw—stability and the Lm-convergence
if the exact solution has an appropriate smootheness. Because, in
thesevproblems, our scheme has local consistency.

In §3, we introduced two upwind finite elements at Pi,“i.e.,
X-upwind finite element T; and y-upwind finite element T;; But

we may use only one upwind finite element Tz at Pi’ which is defined
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as triangle Tj satisfying the conditions,
i) P, is a vertex of Ti’

and
11) 7,-{P;} meets the oriented half line with end point P; which
direction is (v, (P.), v,(P.)).

Then, we obtain the same results (Theorems 1~U4 and Corollaries 1,2)

with v = |v| instead of (3.3).

// v(Pi)
Tz' <

Fig. U. Upwind finite element Tﬁ at P,.
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