








































































































































































































By the definition of Chehyshev-approximations .we:have

N

(7. 3) L Lyy(t;)=0

i
and

t
(7. 4) %gy(t)=Pm_l[f(t,§m(t),I_lg(t,s,im(s))ds)

't
-f(t,ié(t),[ 1g(t,s,i$(s))ds)].

We rewrite the above equations (7. 4) in the form

t
(1.5 Seys)=e(esn)y o)+ ¥(b,830)3(2)as (o),
where
t
h(8)=-(T-P,_)[eC5:0)y(6)+[ ¥(8,558)y(s)as]
-1
1 -0 P
+By g (L8(s5T0) -0 (652 Iy (0)
t 8
+J [o(t,53%0)-¥(t,5;58) Iy (s)ds}ae,
-1
and

iz(t)=§$(t)+e[im(t)—ié(t)].

Noting that ig(t)&ue for any t€J and 6€[0,1], we obtain, by the

same:- ‘argument as that used in proceeding from (5.16) to (5.17),

(7. 6) uan;pl<m-1>x8nyuQ+x4uig-xucnynQ;<x8+Ku)euynQ

from (7. 1) and (7. 2).
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On the other hand, applying Lemma 2.3 to the boundary value
problem (7. 5) and (7. 3), we obtain
. 1
y(6)=]" R(s,a)m(s)as,

-1
where ﬁ(t,s) is the Green function with respect to the matrices
?(t;%), ¥(t,s;R) and Li(i=0,1,--~~-,N). Then it follows from
(7. 6) that

R I < (Ko +K, ORI -ellyl
(7. 7 HYHQ;| Q h{Q; 8 u) HQE ylg-

Since € 1s arbitrary, the above inequality (7. 7) implies that
ivllg=0.,
that 1is
y(t)=0 for any tedJ
by the Parseval's equality for the finite Chebyshev polynomial
series y(t).
This proves the uniqueness of Chebyshev approximations and

hence completes the proof of Theorem 4.2.

8. Proof of Theorem 4.3
For the given approximate solution x=x(t) of the boundary

value problem (0. 1) and (0. 2) we put
. t
(8. 1) E(e)=r(s,8(1), [ a(t,5,%(e))as)va(o)

and
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N
(8. 2) - L,Xx(t,)=2".
120 1

Introducing the matrices A(t) and B(t,s), we rewrite the equations

(8 .1) in the form
d - - t - -
(8..3) a-gx(t)=A(t)x(t)+J B(t,s)x(s)ds+h(t;X)+q(t).
: -1
Here we denote that

t
h(t;x)=f(t,x(t),J g(t,s,x(s))ds)
-1

t
—A(t)x(t)—[ B(t,s)x(s)ds
-1

for any x=x(t)€C(J3;D). Applying Lemma 2.3 to the boundary value
problem (8. 3) and (8. 2), we have

A 1
(8. 4) J'c(t)=R(t,-1)G'12,'+J’ H(t,s)[h(s;%)+q(s)lds,
-1
where H(t,s) 1s the Green function with respect to the matrices
A(t), B(t,s) and Li(i=0,l,-°°'-,N).
To seek an exact solution of the system (0. 1) satisfying

the boundary condition (0. 2), we consider the iterative process

1
xn+1(t)=R(t,-l)G-12+I_1H(t,s)h(s;xn)ds

(8.
5) (n=0,l,'°‘°')
xo(t)=i(t).
For the iterative process (8. 5) we shall prove that 1t can be

continued infinitely in the space C(J;D) and that
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(8. 6)

and

(8. 7)

n
% e =2pll 2 lxy =0l

l‘xn+1-x0 “C;‘S s

for n=0,1,*++++, In fact, for n=0 the inequality (8. 6) is evident.

Since

1 .
xl(t)-xo(t)=R(t,-l)G_l(2-2')-I H(E,0)a(s)ds,

then by the assumptions of the theorem we obtailn

IIx,-xgllosMye+M, v,y

which implies by the condition (5) in (4. 4)

lxq —x ol g2 (1K) 6<8.

This proves (8. 7) for n=0. To prove our statement by induction,

let us suppose that the iterative process (8. 5) has been

continued up to n-1 and we have obtained (8. 6) and (8. T7) up to

n-1. Then by the inequality (8. 7) for n-1 we can make xn+l(t)

and from (8. 5) we have

(8. 8)

where

1
xn+1(t)-xn(t)=1_1H(t,s)[h(s;xn)—h(s;xn_l)]ds,

h(tsx )-h(tsx _,)

t
=f(t,xn(t),J g(t,s,xn(s))ds)
-1

t
_f(t,xn_l(t),I_lg(t,s,xn_l(s))QS)

t
'-A(t)[xn(t)—xn_l(t)]—I_]B(t,s)[xn(s)—Xn_l(s)]ds.
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Moreover, by a mean value theorem we obtain

h(t;x )-h(t;x _4)

1 t
=JO{¢(t;xg)[xn(t)-xn_l(t)]+I_1W(t,s;xg)[xn(s)—xn_l(s)ds}de

t
-A(t)[xn(t)-xn_l(t)]—I_lB(t,S)[xn(S)-xn_l(s)]dS,

where
e - . 3
xo(8)=x__,(£)+6[x_(t)-x _;(t)I€C(I;D).
It follows that

In(tsx )-n(tsx, )

1
0
.ﬁfoll@(t;xn)-A<t)\lllxn<t>-xn_1<t)llae

-1

Hence for the relation (8. 8) we have
“xn_xn-IHC;“H“Cuh(t;xn)-h(t;xn-l)uc

;MI(K/2M1+2K/MM1)"xn-xn_ﬂlC=K"xn—xn_inc

by the assumption (3) and (4) in (4. 4) of the theorem.

implies (8. 6) by the assumption of the induction and

n-1

(8. 9) “xn+l-x0NC;(Kn+K +~----+K+1)"x1-x

0“C
;(M25+er)/(1—n)é5§

This completes the induction and hence we see that the

process (8. 5) can be continued infinitely and satisfies

inequalities (8. 6) and (8. 7) for every n.
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By the inequalities (8. 6) and (8. 7) we see that the sequence
{x_(£)}CC(J;D) obtained by the iterative process (8. 5) converges
uniformly to a function R(t)e€C(J;D). It readily follows from (8. 9)
and (8. 5) that

I 2-xll < (M e+M;r)/ (1-Kk)<8

and
-1 (L
(8.10)  R(t)=R(t,-1)G z+[ H(t,s)h(s;R)ds.
-1

The equation (8.10) implies by Lemma 2.3 that
y .

L

L.%(t,)=4
and
t

%Ex(t)=A(t)2(t)+I B(t,s)R(s)ds+h(t;8)
-1

t
=f(t,2<t>,[ 8(5,8,2())ds).

Therefore the function %(t) is a solution of the boundary value
problem (0. 1) and (0. 2) belonging to the space C(J;U).

In order to prove the uniqueness of the solution of our
boundary value problem, we consider another solution x=R%'(t) of
the problem (0. 1) and (0. 2) belonging to the space C(J;U). Then
“ N
(8.11) iEOLix'(ti)q

and
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t
(8.12) %ﬁ'(thf(t,ﬁ'(t),[ g(t,s,8' (s))ds)
' -1
t
=A(t)2'(t)+[ B(t,s)%' (s)ds+h(t;R').
-1
Equivalently the relations (8.11) and (8.12) imply that
. 1
(8.13) ﬁ'(t)=R(t,-1)G'12+I H(t,s)h(s;R')ds.
: ‘ -1
Subtracting (8.13) from (8.10), we obtain
"x'x'ncif“x'xduc,
which implies

" x-x' uC=0 .

This proves the uniqueness of the solution of the problem (0. 1)
and (0. 2) 1lying in U for any teJ.
In order to prove the isolatedness of the solution x=2(t),

i1t 1s enough to see that the matrix

R(t
Ly

~
G=

i

"l)

e~

0 i

is nonsingular, where'ﬁ(t,s) is the resolvent_matrix wlth respect
to the matrices ¢(t;®) and ¥(t,s;®). Suppose that @ is singular.
Then there exists a nontrivial vector c¢ such that

/Gc=0.
For such ¢ let us put

y(t)=R(t,-1)c.

Then y=y(t) is a nontrivial solution of the boundary value problem
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of the form

N
(8.14) )
i=

N

Liy(t1)= LiR(ti,-l)c=Gc=0

)
0 1=0

and

t
(8.15)  py(6)=0(6;)y(E)+] ¥(t,558)y(s)as
-1
t
-A(©)y(e)+] B(8,0)y(a)as

€
+[¢<t;x>-A(t>1y<t)+[ [¥(t,s;3%)-B(t,s)ly(s)ds.
-1
Applying Lemma 2.3 to the problem (8.14) and (8.15), we obtain

1
y(t>=j (HC5,9)L0(s30)-A(s) Iy (s)

s
+[ [¥Y(s,u3R)-B(s,u)]y(u)dulds.
-1

Then, by the assumption. (3) and (4) in (4. U4), we have
19l g Bl o (k/2my +2/M )|yl o=kl ¥ .5
Whidh implies that
- ylig=0-
This 1s contradiction. Hence the matrix‘@ is nonsingular, that

is, the solution x=8%(t) 1is i1solated. This completes the proof of

Theorem 4.3.
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The Buckling of Plates by the Mixed Finite Element Method
By

%
Kazuo ISHIHARA

1. Introduction

We shall consider the mixed finite element approximation applied

to the buckling problem of the thin plate with the clamped boundary

condition:
% a2u
AAu + A T,y 4 = = () in @
=1 1J 9x,9x ' ’
(1) i,j=1 1i°7]
u = 9u/9v = 0 on 3Q.

Here § 1s a bounded convex domain in the‘xlxz—plane with boundary
3Q consisting of a finite number of smooth arcs, A 1is the Laplace
operator, 9/9v 1s the outward normal derivative along 92, and Tij
(1,3=1,2) are given smooth functions such that

T12 © To1»

- 9T5q . 9T55 _ o
’ Bxl 8x2 *

The buckling of the plate 1s possible only for certain definite values

BTll 3112

+
axl 3x2

of A. The minimum of these values determines the critical buckling
load. The associated buckling configuration is the function u corres-

ponding to the buckling load A. A simple case i1s buckling under pure

* .
Department of Mathematics, Facullity of Science, Ehime University,
Matsuyama 790, Japan.
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compression
AAU + 2pu = 0.
The aim of this paper is to give the rates of convergence for
the finite element approximate solutions of the eigenvalues and the
eigenfunctions, by applying the mixed method with piecewise linear

polynomials proposed by Miyoshi [5],[6].

2. Notations and weak formulation

Let L?(Q) be the real space of square integrable functions on
Q, whose inner product and norm are denoted by ( , ) and || .||, re-
spectively. Let H™(Q) be the real m-th order Sobolev space(m=1,2,

3,+++) provided with the norm

Bl = C L I

|ojsm
Here a=(B,y) 1is a two-component index with non-negative integers,

o a
|a]= 8 + v and D = BE/L//;xg Bxg.

The spaces Hé(n) and HS(Q) are given by

{r; re v (), £ =0 on aQ},

L
HO(Q)

{f; f€H?(Q), f = 3f/dv = 0 on 3Q}.

2
HO(Q)

In order to deal with the buckling problem (1) in a weak form,

let us define bilinear forms < , > and [ , ] by

cu,v> = ¥ (D%u,D%),
Jof =2
2
(u,v] = ) (Tijau/axi,av/axj).

1,j=1
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We assume that

[u,ulzo0 for each uGHl(Q),
and that the norm ﬂl-m induced by [ , ] 4is equivalent to the norm
u-ﬂl in Hé(ﬂ). The standard weak form of (1) consists of finding a
real eigenvalue A and a non-zero eigenfunction uéHg(Q‘) defined by

<u,6> = Alu,é) for each ¢€-Hc2)(9).

It is well known that all the eigenvalues {Ai} are arranged as

O<A1£A2$—O"(“'

The multiplicity of each eigenvalue 1s always finite. The correspond-
ing eigenfunctions are denoted by ‘{ui} with the normalization con-
dition
[ui,uJ] = 613
where dij 1s Kronecker’s delta. It is also well known that the eigen-
b 2 by .

functions {ui}i=1 belong to the space HO(Q)(\H () when 23 is
sufficiently smooth and that {ui};:1 belong to Hg(ﬂ)(\H3(Q) when
@ 1s a convex polygon. From the Rayleigh principle the eigenvalues

are characterized by

<u,u>
Ai = min i=1,2, s
LleHg(Q) [u,ul
u¥0
[u,uJ]=0
J=1l,+..,1-1

and the minimum is attained by uy .
In order to construct the mixed finite element scheme, we intro-
. 1 1
duce another formulation: Find (u’Ull’Ulz’U21’U22)eHO(mXH () X

HY (2) X HL(2) X HL(2) (U ,=U such that

21)
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] [(au/axy,30, /3%, D+ (Uy5,0,00] =

for each ¢,.¢€ HL () (¢ 5=057) >
(2) 13 12°%21

2 2
(3Uy 3/3x 3¢/9x,) - A( ) T,,U.,.,0) =0
5o g 1,j=1 ¥
for each ¢e H%(Q).
We assume that - uéHg(Q)f\HE](Q)- The solution (u,UllgulgsUgl’Ugg) of

(2) 1is related by
5
Ujy = 0 wloxyax, ,  1€1,5£2.

We define a space V by

V= {(u,U,,,U U22)éHé(Q)XHl(Q)XH1(Q) X H1(Q) X HI(Q);

11°Y12°U21>

U, =0

12 “21° ii,:j[(au/axi,ad)ij/ax;]) + (Uij’q)i,j)] = 0

for each ¢iJeHl(Q) )1,

(615¢5;
and a bilinear form E(U,W) by

E(U,W) = (Upy,Wpp) + (UppuWyp) + (UpgsWpy) + (UppsWpp)

= = m 1
where U (Ull’ 12,U21,U22), W = (wll, 105Woq W 5p). The elgenvalues
are characterized by

E(U,U)
= min = o o o
M OT tu,u) eV R 121,250,
[u u ] 0
J=1, -,i 1

i, 1 1 1 1
and the minimum is attained by (ui,U )—(ui,Ull,Ul2,U21,U22)

3. Convergence of the finite element scheme

For simplicity, we assume that the domain § 1s a convex polygon.

Then the eigenfunction u belongs to Hg(Q)I\Hj(Q). The domain 1is
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decomposed into disjoint triangular elements in the usual manner. Let

P,,1€i&n (or P,,n+l1 £€1i<£n+J) Dbe the nodal points of the triangula-

i? i
tion Th which belong to g (or 23Q). Here h 1is the largest side
length of all the triangular elements. It 1s also assumed that the
triangulation Th is uniform in the interior of @ in the sense of
Miyoshi ([5],[6]). Let {$i}(i=l,2,}~~,n+J) be the piecewlse linear

functions such that

Qi(Pj) = 8,45 1<1,5<n+d.

Let Y' be the subspace of Hl(n) spanned by {@1,-.. } and Yg

A

2P+
be the subspace of Hé(n) spanned by'{$],-'-,$h},
AADL A A
AsusUyq5U755U075

A
12=U21) of the consistent mass scheme for the

We now define the mixed finite element solution (

ey 9§

L]

val A h @

problem (2) by

2
z=l[(aﬁ/3x1’3$13/3x3) + (ﬁij’$ij)] =0

1,3
’ for each @iiéYh (Q]?-_-’(le)’
(3) 5 ) '
A A n o A,
T (8U,,/0x,,9¢/9x,) - X( g T,,U,:,9) =0
1,5=1 17 7J° 1 1,5=1 1717
for each QGYE.
We define a space Vh by
A A A A P A
V= (8,00,,0,,,0,,,0,,) € vh xR 2 ¥R x vxy? T =T,

ﬁZJ[(aG/axi,aﬁ?iJ/axJ) + (ﬁij,{ﬁij)] =

for each _$ijé-Yh ($125$21)}.

AN A A A h A h
It is also assumed that for '(u’Ull’Ul2’U21’U22)€'V and WéYO,

2 A |
(4) ( T,,0,,,M = -[4,%7.
AT

17



By (3) and (4), we can obtain a set of the matrix equations

Kx + My = 0, Xy +7%Gx =o0,
where K and K are elastic stiffness matrices, G 1s the geometric
stiffness matrix, and M 1s the consistent mass matrix. The eigen-

values {Qi}iﬁl of (3) are arranged as

A
0<% =%,& .- 5% .
The corresponding eigenfunctions (Gi,U )= (ﬁ Ull’Ui2’G%l’ 22) (1=1,2,
«,n1) can be normalized by
(6,,8,1 = 6,5,
Then the eilgenvalues are characterized by

[, ,u;1=0.

A A
A E(U,U)
A, = min , ————ms— , 1=1,2, ,n,
1 @.0Hev™ oy?
Aufo
[u,uj]=0
J:l,-oo’i—l

A
and the minimum is attained by (ui,U ).

Consider the static plate bending problem with the clamped boundary

condition:

MW = f in @,

(5)

W 8@/§v= 0 o aN.
Here f 1s a given function belonging to L2(Q). Miyoshi proved the

following proposition ([5],[61]).

N A A
Proposition 1. Let w be the solution of (5) and (G,wll,wlz,w21,

h h h h h
f\\l22)eY0XY XY XY XY (w12 21) be the finite element solution

defined by
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" | iégl[(aﬁ/axi,a{pfm/axj) + (ﬁi,j\,?ij')i =AO )
(6) . ) for each A?ijé Yo (91295175
I (QWy/0%,,30/9%y) + (£,9) = 0
u - e for each ﬁ}éYh.
Then

v - %, =clr] nt/2

where C 1is a constant independent of h.

We can now obtain the following results using Proposition 1. The

proof will be published elsewhere.

Theorem 1. Let 'Qi' be the approximate eigenvalue of Xi. Then

for sufficiently small h, there exlists a constant C] which is in-

dependent of h such that

N 1/2
Ay - Ay | L cptlel

i

Theorem 2. Let )‘1 be of multiplicity p+l (p=0, }‘i—1< )\i=---=

li+p<:xi+p+1)’ and ui’...’91+p be the corresponding eigenfunctions.

Let Gk be the approximate eigenfunctidn corresponding to ‘Q%(k=l,2,
.,n). Then for sufficiently small 'h, there exists a constant C2
which is independent of h such that
dist;{uJ s span[ﬁi, o "ﬁi-i-p]} < 02h1/2, J=i,.-+,1i+p,

where

dist{u, B} = inf [ju - bll.
beB

As a corollary to Theorem 2, we have

9



Corollary 1. If Xi is a simple eigenvalue, then for sufficiently

small h there exists a constant 03 which is independent of h such

that

A 1/2
l"ui - ui"|5503h .

Remark. Furthermore, we can propose the generalized mixed mass
scheme with a parameter 6, 0<6<£L1([2])

Kx + {6M + (1-8)M;}y = 0, Ky + %Gx = 0,

where M1 is the diagonal lumped mass matrix. The error estimate of

the above scheme 1s similar to the one of the consistent mass scheme.

4. Numerical example

To show the validity of the theoretical results, we deal with the
following example of the square plate, which 1s the same as the one

given by Weinstein and Stenger ([7], pl93).

Example. §: -m/2< %, X5 < n/2,
AAu + AAu = 0 in @,
u = 3u/dv = 0 on 3Q.

Although the exact first eigenvaiue (buckling load) A is not known,

1
they obtained the inequality

5.30362 < A, £ 5.31173.
We divide §© into nXn uniform mesh as shown in Figure 1. Our

choices for the parameter 6 are 0, 0.5, 1. Table 1 shows the
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numerical results, from which we can see that the approximate first
eigenvalues converge as h tends to zero. All numerical computations
were performed on the FACOM 230-28 computer at Ehime University, and

the FACOM 230-75 computer at Kyushu University.

Figure 1. Mesh pattern (3X3)

Table 1. The results for Example

mesh(nx n) TX7 8§ X8 9X 9 10% 10
" h J2n/6 /7 (Zn/8 {31/9
0 4 ,82007 4,94137 5.02223 5.07883
0 0.5 5.45497 5.42827 5.40559 5.38766
1 6.31138 6.03642 5.86073 5.T4163
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