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Equivalence Class and Invariant Figures
of ‘-Rational Iterations
with special reference to

the Global Convergence Properties of Newton's Method

Kohel Sato

ABSTRACT

Basic concepts and theorems about global convergence features
of rational iterations with one complex variable are summarized
here. The concept of equivalence class of a rational function,
which is implicit in the works of G. Julia and others, is
reformulated in view of practical application. Properties of
the "domain of direct convergence" presented by Julia are
derived more systematicaliy from those of "invariant figures"
for a given rational iteration. Applying them to Newton's
method for solving polynomial equations, we have made a scheme

of sketching the shapes of 1lts convergence regions mechanically.

1. Introduction

The iteration by a rational function with one complex
variable is one of the processes most frequently appearing
in numerical analysis. The essential part of its global
convergence features was studied by Gaston Julia in his
comprehensive work [4]. His work, being concerned mainly
about the topological features of convergence areas, alsQ

contains many hints on the numerical methods for determining



their boundaries. On the other hand, in the field of numerical
analysis, we hardly find general treatments on global behavior
of this kind of iteration.

The aim of this paper is to sum up such global properties
of rational iterations that are considered to be useful 1n
numerical analysis and to establish a practical method for
determining the shape of its convergence areas. Some of
the concepts and theorems presented here, including the
concept of equivalence class and theorems about Newton's
iteration, are either implicit in Juila's work [4] or
readily derivable therefrom. However, they are reformulated
in view of numerical analysis and their implications in the
practically significant situatlons of applied mathematics
are clarified. In particular, the l1dea of invariant figures
will turn out to be useful for 1lnvestigating the properties

of convergence areas.

1.1. Definitions. By C we mean the closed complex

plane or the Riemann sphere. A rational function ¢ 1is
considered as a mapping from ( onto (. The iteration’

by ¢, which will be denoted by It[®], is a sequence of

mappings: It[¢] {®g, ®i , ®2 , ***} where ®o(2) = z,
®, = &, &, = 06 , &, = 9% etc. The set {w | ®n(w) = 2z}
is represented by ¢_p(z).

When two subsets A, B of ( are related to each other

by the relation ¢,(A) = B (n 2 1), we call A an antecedent

of B and B a consequent of A in It[¢]. Especially, if

dp(A) # ¢,(A) =B (0 <m<n), A 1s called an n-th ante-

cedent of B and B the n-th consequent of A.



When ©®(A) = A, we call A an invariant figure or simply

a figure of It[¢]. (, #© , a set of fixed points of ¢, etc.
are examples of the simplest (invariant) figures of It[¢].
The set {z | lim ¢,(z) = x} 1is denoted by U¢(x) (if
¢ or x 1is evideﬁt from the context, we shall denote it by
(x) or simply by |J). It is well known that, i~ U¢(x; 4 g,
x 1is a fixed point of ¢. The interior, or the open kernel,
of U(x) 1is denoted by U(x), each of whose connected

component is called a convergence region (or a domain of con-

vergence) of It[®] toward x. U(x) and U(x) are other
examples of figures of It[¢], while a convergehce region 1is

not always a figure of It[¢].

1.2. Equivalence of rational functions. If & and V¥

are rational functions and there exists a linear fractional
function T such that To¢T.; =¥ , ¥ 1s said to be equivalent
to ¢ and is denoted as ¢ = ¥ or ¢ ~-I+» ¥, The following

propositions follow readily from this definition.

(1) The relation = 1is an equivalence relation.

(2) If ¢ =~ ¥, then deg ¢ = deg V.

(3) If & —*+ ¥ and A 1s an n-th antecedent of B 1in It[®],

then T(A) 1s an n-th antecedent of T(B) in It[v¥].
(4) If & —=> ¥ and A 1s an invariant figure of It[®],

then T(A) 1is an invariant figure of It[Y].

(5) Ir ® — ¥, then T[Uy(x)] = Uy[T(x)] and T[U4(x)]
= UW[T(x)].

1.3. Classification of fixed points. Let x be a flxed

point of ¢. Then x 1s either a point of Uo(x) or a
point of U¢(x) - U¢(x). In the former case we call x

a stable fixed point and in the latter case an unstable fixed




point. Now we define the "dissipation factor" of the fixed
point x by

o o'(x) Af x A,
(1.1) p(x) =

{ 1/¢'(x) if X = o

which is invariant under an equivalence transformation, i.e.,
if ¢ 2 ¥ then p¢(x) = pw[T(x)]. It can easily be
verified that x 1s stable if 0-< |p(x)| < 1 and unstable
if 1 < |p(x)| < w. Furthermore, it is known (see, e.g., [1],

[4],[5]) that

(1) the convergence of It[¢] 1is of the second or higher
order in a vicinity of x 1if p(x) = 0 ;

(2) the convergence of It[¢] 1s of the first order in a
vieinity of x if 0 < |p(x)] < 1 ;

(3) 1if |p(x)]| = 1, either U(x) # # or every vicinity of
X contains infinitely many non-convergennt sequences of
values generated by It[¢] ;

(4) 1if |p(x)| > 1, then U(x) = 4.

We call the case (1) strongly stable, the case (2) weakly

stable, the case (3) semistable .and the case (4) proper-

ly unstable. If It[¢] shows the convergence of the n-th

'order in a vicinity of a strongly stable fixed point x, we
may call x a stable fixed point of the n-th order, which
is the case when x (# ®) is an (n-1)-ple zero of ¢ '(x)
or x = o is an n-ple pole of ¢ (x).

It can elementarily be verified that there are deg ¢ + 1
different fixed points of ¢ 1if and only if all of them have
dissipation factors other than 1. So we call x a multiple

fixed point if p(x) =1 and a simpie fixed point otherwise.




Table 1. Classification of Fixed Points

stable fixed point (B) unstable fixed point (%)
strongly weakly . properly
stable stable ;emlstable unstable
simple " |multiple “simple
. = 1
=0 0 < <1 =1 | lel 1<
o el o 0 41 le]
second or first domain of domain of
higher order order ~ convergence ,convergence
convergence convergence exists is absent
“the fixed point is contained| the fixed point is not contained
in a domain of convergence in any domain of convergence

The multiplicity of the fixed point x of & 1is the

multiplicity of the root x of the-equation &(x) = x when
x # », whereas it is the multiplicity of the root 0 of

the equation 2z¢(1/z) = 1 when X = =,

1.4. Julia's theory. .The results of Julia's study [u3
on the global convergence properties of rational iterations

may be summarlzed into the féllowing four theorems.

[Theorem I] If deg ® > 2 and ¢ has no multiple fixed
point, then ¢ has at least one properly unstable

fixed point.

[Theorem II] Let E be the set of all antecedents of all
(1) properly unstable fixed points and (2) éemistable fixed
points whose dissipation factors are roots of 1 , of ¢
with deg ¢ 2 2 and E' be its derived set. Then every
neighborhood of every point of E' contains antecedents
of all the points on ([ except at most two points, and
E' coincides with the boundary of [(x), where x 1is an

arbitrary fixed point of ¢.



[Theorem III] Let x be a stable fixed point of ¢ with

deg ¢ > 2, and the convergence region of It[¢] which

contains x be denoted by g(x). Then ,8(x) contains .

at least one critical point of ¢, and every component

of U(x) other than g(x) is an antecedent of g(x)

if U(x) # g(x)-

LTheorem IV] Let x be a semistable fixed point of

%

with deg ¢ > 2, and the convergence region of It[¢]

which has x on its boundary be B(X). If x 1is

a

multiple fixed point with multiplicity p, there are

P - 1 such regions, each of them containing at least

one critical point of ¢. If p(x) 1is an n-th

primitive root of 1 with n > 2, then the number

of

g(x)'s is a multiple of n and at least one of them

contains at least one critical point of ¢é. In both

cases, every c¢omponent of U(x) 1is an antecedent of

g(x).
Theorem I 1s connected with the fact that, if ¢
N + 1 simple fixed points Xy (1=1, *+*,N+1; N =
then we have
N+1 1
(1.2) 421 1 = p(xy) 1o

which will be used in the next section of this paper.

has

deg o)

Theorem II implies that E' 1s a perfect set (i.e.,

every point of E' 1s its accumulation point) and that

a convergence region is either simply connected or infinitely

multiply connected.

Julia named the domain g(x) in  Theorem III and

Theorem 1V the domain of direct convergence. If g(x) =

U(x)



(which is the case if x 1s a stable or a double fixed point
and g(x) contains N -1 critical points of &), g(x) is

naturally called a complete convergence region.

2. Special Classes of Rational Iterations

If & =y and the global convergence features of It[®]
are known, those of It[Y¥] can easily be derived therefrom.
Hence 1in investigating the global features of the iteration
by any given rational function, we may find a simplest
function in the equivalence class to which it belongs. The

following theorems are useful for this purpose.

[Theorem 2.1] A rational function ¢ of degree N is
equlivalent to a fraction whose denominator is a polynomial
of degree N -1.

Proof: If <« 1is a simple pole of ¢, the theorem obviously

holds true. If = 1s not a simple pole of ¢, 1t can be

verifled elementarily that there exists at least one fixed

point x of & such that ¢'(x) # 0 and x # . Hence

if we put T = 1/(z - x) , the point at infinity is a simple

pole of TeT_; which is equivalent to ¢.

LTheorem 2.2] The n.a.s.c. that a rational function & of
| degree N is equivalent to a polynomial is that it has

a stable fixed point of the N-th order.

Proof: If « 1s an N-th order stable fixed point of ¢,
d 1s obviously a polynomial of degree N .and vice versa.
If x # » 1is a stable fixed point of the N-th order, then
the point at infinity is an N-th order.stable fixed point

of T<I>T_1 where T = 1/(z -Xx) , and vice versa.



[Theorem 2.3] If a rational function ¢ of degree N has
two stable fixed points of the N-th order, then ¢ 1is
equivalent to zN and vice versa. |

Proof: Let a and B be fixed points of the N-th order.

Then putting T = (2 - a)/(z - B) if o # e and B # =

and T =2 -0 if o # ®» and B = », we have ToT.y = zN

because zN 1s the only polynomial that has two fixed points

of the N-th order at 0 and «. The converse is obvious.

Now suppose that f 1s a rational function which is not
a linear polynomial, and put
(2.1) ®(z) = 2 - £(z)/f'(z) .
It can easily be veriflied, by means of the Laurent expansions,
that all the fixed points of ¢ are simple, their dissipation

factors being as shown in Table 2.

Table 2. Fixed points of &(z) = z - f(z)/f'(z2)
where f 1s'a rational function of =2z

of £ order fixed point of ¢ p(x)
1 | strongly stable 0

zero

X # o m (2-2) weakly stable 1-1/m
pole m properly unstable | 1 + 1/m
neither a zero strongly stable 0

nor a pole

X = 00 ]
zero m weakly stable m/(m + 1)
pole m (2 2) properly unstable {m/(m - 1)




We call ¢ defined by (2.1) the Newton transform of f,
It[¢] being Newton's method for solving the equation f(z)
= 0. Hereafter in this paper, the "Newton transform" will

be abbreviated as "N.T.".

[Theorem 2.4] The n.a.s.c. for a rational function ¢ to
be the N.T. of another rational function f 1s that the
dissipation factor of every fixed point of ¢ differs
from 1 by the inverse of a natural number.

Proof: The necessity is evident from Table 2. Conversely,

let Ay (1 =1, ***, L) and wuj (J =1, ---, M) be the fixed

points of & with

(2.2) p(ry) =1 + 1/2,i and p(uj) =1 - 1/mj s

respectively, where &4 and my are natural humbers. Then

all thése fixed points are simple so that from (1.2) we have

M L

(203) z mj - 2 21 = 1 .
ij=1 i=1
Hence, if we put
(2.4) ¥(z) = z - £(2)/f'(2)
where .
g(z = uy)/Mz = Ay) if ¢() # =,
(2.5) £(z) = g(z - uj){gk(z - A1) if A = o, .

]
8

jgk(z = uy)/R(z = Ay) if uk 5

then, referring to Table 2, we have the relation

(2.6) ¢(z) = ¥(z) , ¢'(z) = ¥'(2z)

for deg ¢ + 1 distinct points (fixed points of ¢). Hence
¢(z) and ¥(z) must coincide with each other for all

values of =z.



- The next theorem is derived directly from Theorem 2.4.

[Theorem 2.5] A function equivalent to the N.T. of a

rationalvfuqction is also the N.T. of a rational function.

On the other hand, from (2.3) we have
[Thqorem 2.6] The N.T. of a rational function has at least

one stable fixed point.

[Theorem 2.7] If ¢ is the N.T. of a rational function and
' has only one unstable fixed point, then ¢ is equivalent
to the N.T. of a polynomial.
Proof: If &(z) = z - f£(z)/f'(z) and ¢ has only one
unstable fixed point at «, then « 1is the only pole of f
'so that f 1is a polynomial. From this and the invariance
of dissipation factors under equivalence transformation

follows the theorem.

It must be noted that the equivalence of N.T.'s of two
ratlional functions does not mean the equivalence of the
rational functions themselves. For instance, the N.T. of
cf(z), where ¢ 1s a constant other than 0 or 1, is
the same as that of f(z), whereas c¢f # f. On the other
hand, if ¢ 1s the N.T. of f and S 1s a linear
polynomial, S®S.3; 1s (in general) not the N.T. of SfS_;
but that of fS.3 , which will be called a function

similar to f.

10



Example 1. If a quadratic function has no multiple fixed

point, it 1s equivalent to

- z2 - 1
(2.7) o(z) = z - k(z = D) ,

where k # 1, p # *1 ., Since the dissipation factors of

the fixed points of the @(z) are

- 2 _ k
(2-8) D(i‘l) =1 - k(l 7 p) and p(°°) = —T(——:-—j-——’

we may suppose |p(=)| > 1 or

(2.9) Re(k) > 1/2

without loss of generality (cf. Theorem I in § 1.1).
Within the restriction of (2.9), the real parts of both
k(1 + p) and k(1 - p) may be less than 1, which shows
that all fixed points of a rational function may be
properly unstable.

From Theorem 2.2, ¢®(z) 1s equivalent to a quadratic
polynomial if either k(1 - p) or k(1 + p) equals 2.

From Theorem 2.4, &(z) 1s the N.T. of a rational
function if k 1s a positive integer (greater than 1) and
k(1 + p) 1s an even integer. Especially, if both k(1 =~ p)
and k(1 + p) are positive even integers, ¢(z) 1is the
N.T. of a polynomial.

If k=2 and p = 0, then ¢ 1s the N.T. of 22 -1
which 1s similar to all quadratic polynomials with simple
zeros. On the other hand, ¢ = z2 if k =2 and p = O.
The well-known properties of Newton's method applied to
quadratic equations with simple roots can therefore be

deduced most naturally from the properties of It[z2].

11



‘Note that z2 itself is the N.T. of the linear function
z/(z - 1). Furthermore, z2 1s equivalent to 2z = kz?
(k # 0), the latter being the function iterated in the

widely used method for calculating the inverse of k.

Example 2. If a quadratic function has a multiple fixed
point, it 1is equivalent to either

(2.10) z+ 1+ a/z (a#0) or z + 1/z

The former, having a double fixed point at <« and a simple
fixed point at -a , 1is equivalent to polynomials if and
only if a = 1. The latter has a triple fixed point at

and is not equivalent to any polynomial.

§é222£2=ié Balley's iteration for root extraction is
defined by
(2.11) 0(z) = —2[(n - 1)zl + (n + 1)a]

(n + 1)zn + (n - 1)a s
where n 2 2, a #0 (cf. [7]). The dissipation factors

of the fixed points of this function are
SIS

((2.12) p(a®) = 0, 0(0) = p(e) = DXL

Hence ¢ must be the N.T. of a rational function if n 1is

odd. In fact, we have &(z) = z - f(z)/f'(z) by putting

n-1

(2.13) f(z) =z 2Z(zh - a)

It is easy to verify that all the stable fixed points of ¢
are of the third order. Especially, if n- = 2, the function

is equivalent to z3 from Theorem 2.3.

12



3. Divergence Centers

If we cannot find a rational function ¥ 'in the equivaleﬁce
class of ¢ such that the E'' of It[¥] is known to be a
circle or a closed line segment, then the E' of It[¢] is
not an analytic curve [31,[4]. 1In this most general case,

.the shape of the E' can be traced only numerically, for
instance, by plotting as many points of E as possible.

This method of numerical plotting has several theoretical

advantages as willl be shown later. For simplicity, the set
of all unstable fixed points of ¢ other than semistable ones
with dissipation factors whose arguments are incommensurable

multiples of 7 will be denoted by e = {%} and the n-th

antecedent of % by ’é {A}. If we write

n
. O A
(3.1) En k=0 k
then we have %}3 En = E. If the numerical values of %'s
€ % are known, those of %'s € Q , é's € g etc.  can be

calculated by solving ¢(é) = kkl successively. Hereafter

ﬁ will be called a divergence center of the k-th order.

Example 4. It can easily be verified that every quadratic

polynomial 1is -equivalent to

(3.2) o(z) = 22 + p ,

"

where p 1is a constant. Here we restrict ourselves to the

case where p is real. The fixed points of (3.2) are
(3.3) ct = (1 -/IT -10p)/2, e, = (1 + VI = Op)/2

and «., Thelr dissipation factors being 2c¢; , 2c2 and O,

we have _
. {ca} if -3/4 < S 1/4
(3.14) _ { 2 3 P / s

0 {c1 , c2} otherwise .

13



The divergence centers are calculated successively by means

of the formulae:

(3.5) A= =), A=/ -p (k2 2)
1 0 k k-1

Rough sketches of E' mechanically made from numerical

values of the points of E8 for several real values of

p are shown in Fig. 1. (Cf. Example 5 in § 5.)

EERTY T LYY R TRPTY PP

P 3 -2.500

@D e - - @O -

Mg NS

P = -0.750

P = 0.125

P = -2.000 P = -0.500 i p=o0.25
) )
Pz -1.000 P 'z 0.000 # = 0.500
. L 2R ALY
¢ : Y
e H ]
[
.“#fnu_.““““. [SUSTUURURTURRURU X : SOV
H : \ X
b & *
LY 4
[ VR

Fig., 1. Julia'é singularity set E' for It[z2 +p] whem P

takes several real values

numerical values of the points of Eg )

14
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L, Minimal Figureés

1f A2B and both A and B are figures of It[®].
we call B a subfigure of A. If every subfigure B of

a figure A ‘such that

(4.1) lim C)cp_m(B) = lim ®_n,(B) 2 A

N> m=0

has the same closure as A, we call A a minimal figure

of It[¢]. A minimal subfigure of A which is not contained

in another minimal subfigure of A will be called a kernel
of A.

For example, elther a fixed point of ¢ or a set of
fixed points of ¢ 1s a minimal figure of It[¢]. If
deg ¢ > 2, then E, the set of all the divergence centers,
is not a minimal figure of It[¢®],.its kernel being %(= Eg)>
i.e., the set of all unstable fixed points of &. '
An n-cycle of It[Q],‘i.e., the set of n distinct
points x,;, X2, ***5 Xp satisfying

(4.2) o(x,) = X,,q (k= 1,°°°,n-1), &(x.) = xi

is another example of minimal figure.

From the above definitlions, the following propositions

are easilybderived°

(1) If a minimal figure is a finite sét, each of its elements
is either a fixed point or a member of some cycle.

(2) If a minimal figure consists of a finite number of.
connected components, each component coincides with one
of its own consequents.

(3) The kernel of a figure which is perfect (i.e., which

coincides with its derived set) is perfect.

15



(4) The kernel of a figure which 1s an open set is an open

set.

5. Areas of Direct and Indirect Convergence
Hereafter we always suppose that
(5.1) N = deg ¢ 2 2 and U(x) # @
The kernel of U(x) will be denoted by g(x) and called

the area of direct convergence toward x. From the property

(4) of the preceding section, g(x) is an open set. A
component domain of g(x) is nothing but Julia's "domain
of direct convergence" which is denoted by g(x) in this
‘paper. Especially, if x 1is either a stable or a double
fixed point, g(x) coincides with g(x).

As a natural consequence of its definition, g(x) is
a minimal figure of It[¢]. If x 1is either a stable or
a multiple fixed point, 8(x) is also a minimal figure of
It(o].

If U(x) # g(x), we call U(x) - g(x) the area of

indirect convergence toward x and its connected component

a domain of indirect convergence toward x. A domain of

indirect convergence that 1s an n-th antecedent of B(x)
will be denoted by R(x). The union of all R(x)'s will be

denoted by H(x). Thus we have

(5.2) U(x) =n\=Jog(x) =ng=_)oug(x)
5.1. Properties of Ag(x) and D(x). It has already

begn proved by Julia that 8(x) has a finite number of
components if either |p(x)| < 1 or p(x) 1s a root of

a cyclotomic equation. The following theorems will hold

16



true even if |p(x)| =1 and p(x) 1is not a root of a
.cyclotomic equation. For simplicity, we may write g. for
g(x) and p for g(x) if x 1is either understood or

indeterminate.

[Theorem 5.1] There is at least one unstable fixed point
on ag(x).

Proof: If x 1is a semistable fixed point, the theorem is
obvious. If x 1is a stable fixed point, it is a simple
fixed point so that at least one fixed point y distinct
from x exlists. The fixed point y must lie either on
3g(x) or in a region A bounded by a closed Jordan curve
that is a subset of Bg(x). In the former.case, y must
be gnstable aﬁd the theorem holds. In the latter case,
both A and B93A beilng invariant figures, we can prove the
existence of at least one fixed point on 9A by reductio
ad absurdum, through applying Carathéodory's theorem [9]

td A. This fixed point on ©9A 1is naturally unstable.

[Theorem 5.2] 1If g(x) consists of a finite number of
g(x)'s, then every g(x) coincides with one of its own
consequents, i.e., there exists n for each B(x) such
that B(X) is a figure of It[®,].

Proof: This theorem is a special case of the property (2)

of minimal figures mentioned in the foregoing section.

{Theorem 5.3] If 8 is a figure of It[¢,], it is multiply
connected if and only if it contains a pair of critical
points of ¢, around which the same branches of ¢_,

exist.

17



Proof: Let TI' be a connected component of 3D on which a
fixed point of ¢ exists. Then T must be a figure of
It[o,]. 1If 8 is multiply connected, 38 contains at leastu
one branch of ¢_.,(I') other than T 1itself. (For, every
vicinity of a point on E' contains antecedents of all other
points on E' due to Theorem II.) Hence D must contaln at
least two branches of ¢_,(2z) rxg divided by a closed curve
on which a pair of critical points of ¢, exist. Conversely,
if P contains such branches of ¢_n(z)r“\8, then &_n(T) M
88 has at least one branch other than T 1tself so th;t

8 cannot be simply connected.

As was already pointed out by Julia, a 8 that is not

simply connected is infinitely multiply connected.

The next theorem can readily be derived from Theorem 5.3.

[Theorem 5.4] 1If 8 is a figure of It[¢,], it is
(1) simply connected if there 1is only one unstable fixed
point of ¢, on ag H
(2) simply connected if there is only one eritical point
of ¢, 1in Q 5 and

(3) multiply connected if all the critical points of ¢,

are contained in 8

2.2. Divergence centers on 9D . On the other hand,

-

from Theorem 5.1 and the deflnition of R’ we have

[Theorem 5.5] BR contains at least one . A. and no % such

that m < n.

Furthermore, since ¢_;(z) MD(x) has two or more

branches if x -1is eilther a stable or a multiple filxed poirnt,

18



there must be at least one % on Bg(x). Hence the

following theorem is verified by mathematical induction.

[Theorem 5.6] If x 1is either a stable or a multiple
fixed point, there exists on aR(xé a divergence center

of any order not less than n.

The following theorem can be proved in a similar way.

[Theorem 5.7] If p(x) 1is a root of a cyclotomic equation,

there exist on ag(x) divergence centers of all orders.

These theorems are useful for numerically tracing the

shapes of convergence regions by the method described in § 3.

[Theorem 5.8] If it is known that 8 is a simply connected
region which is a figure of It[®,] and that o_n(z) N D
has M branches, then Bg is a closed Jordan curve or
not according as the number of fixed points of ¢, on
38 equals M - 1 or not.

Ezggﬁ:. If 8 is a simply connected domain, there exists a

univalent analytic function g which maps 8 onto the

interior of the unit circle C¢ [9]. Since W1¥£8¢n8-1
maps the interior of C onto itself and its inverse VY._.;
has M branches on C, ¥ has M - 1 different fixed
points on C. In order that 88 may be a closed Jordan
curve, these fixed points of ¥ on (¢ must correspond
one—to—one.fo the fixed points of ¢, on .ag., Conversely,
if 88 contains M - 1 different fixed points, it can be
proved that the mapping 88 _E, C 1s a bijection and hence

88 must be a closed Jdrdan curve.
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5.3. Polynomial case. If ¢(z) 1is a polynomial with

N = deg ¢ 2 2, the point at infinity is a stable fixed point
of order N so that we have
(5.3) 3p(=) = 3Y(w) = V(=) = E'
and all branches of ¢_;(z) are around <« which is a
critical point of ¢. Therefore, applying Theorem 5.3
and Theorem 5.8 to g(w), we have
(1) g(m) is simply connected if and only if it contains
no finite critical point of ¢ ;
(2) E' 1is a closed Jordan curve if and only if no finite
critical point is in g(w) and ¢ has N - 1 different

unstable fixed points.

Example 5. 1In case &(z) = z2 + p where p 1s a real
'constant, g(m) is simply connected if and only if O ¢
8(*), which is equivalent to -2 £ p £ 1/4 as is verified
elementarily. On the other hand, ¢ has only one unstable
fixed point if -3/4 < p £ 1/4 and two unstable fixed points

otherwise (cf. Example 4). So E' 1is a closed Jordan curve

if and only if -3/4 < p £ 1/4. (See Fig. 1l.)

Example 6. If N 2 3, it sometimes happens that a multiply
connected convergence region coexists with a simply connected
one. For instance, g(w) of It[z3 - 3z + 3] 1is multiply
connected because it contains a finite critical point -1,
while another finite critical point 1 cdincides with a
stable fixed point and hence 8(1) = 8(1) is simply
connected, Moreover  8R(1) is a closed Jordan curve

because 1t contains only‘one single critical point of .
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Fixed points other than 1 and <« are properly unstable.

Therefore E' consists of a countably infinite number of dﬁs-

crete closed Jordan curves which separate U(l) from U(?).

6. Newton's Method Applied to Polynomial Equations

Let f(z) be a polynomial with N (2 2) different zeros

and ¢®(z) Dbe its Newton transform. We have

(6.1) N*_dgf deg f 2 N = deg ¢

Zeros of f are stable fixed points of ¢, while the point
at infinity is the only unstable fixed point of Q,‘With the
dissipation factor

(6.2) p(e) = N*/(N* - 1)

Hence, the following properties of It[®] are readily

derived from the theorems in the preceding section.

(1) Every 8 1s a simply connected infini?e domain, while
2 (n 2 1) is a simply connected finite domain.

(2) ag is a closed Jordan curve 1if and.only if 8 contains
only one critical point of ¢ which is a simple critical
point.

(3) ag (n 2 0) contains divergence centers of all orders
equal to or greater than n, and never contains those

of orders less than n.

For simplielty, a D which 1s bounded by a closed Jordan
curve will be called a normal 8 . Since there are N
different stable fixed points and no more than 2N - 2
different critical points of ¢, the following two

propositions are derived from this definition and (2).
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(4) At least two 8'3 are normal.

(5) If one 8 is complete, all the other g's are normal.

On the other hand, it can be proved from (2) and
Caratheodory's theorem that ¢_;(z) has two branches on the

boundary of a normal 8, which implies the following fact.

(6) 1Ir D 1is normal, then 23D contains only one and

)
on-1 A's (n 2 2), the arrangement of {ﬁl 0 £k £ n}
on 88 being the same as that on the unit circle in the
case of It[zz]

6.1. Center of gravity of roots. Now we define symbols

k » mj and G as follows.
H : a stable fixed point of ¢ (i.e., a root of f = 0);
~(another index 1 1s attached as the subscript 1if
necessary).
 : a root of ¢ (x) = W £ op_1(x) (k 2 1).
my : the multiplicity of %i as a root of f = 0.

G : the center of gravity of the roots of f = 0, i.e.,
3 *

(6-3) G = z migi/N
i=1

Note that, if |z - G| 1is sufficlently large, we have

(6.4) ¢ (z) =G+—Z_R‘;§'_+o<_z_}_.é_)

This implies that, if a figure of 1It[®] contains a point

in every neighborhood of =, it is a repetition of similar

configurations which are arranged asymptotically like a

geometrical progression~with G as the center of similitude.
For example, if D 1is normal and we define X(R) as the

exterior of the circle with center G and radius R, then
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Bglh\X(R) is approximated by

(6.5) C}o‘{p(«)%z -G)+6G | z¢&aAl,
ns

where

(6.6) A = Bgc’\X(R) - 9D N\ X[p(=)R]

usually consists of two half-closed finite arcs of Bg'o
Hence it is inferred that 38 is an analytic curve only
when it coincides with a straight line which passes G.
'In the other (general) case, 88 must be a curve somewhat
like a branch of hyperbola --- more exactly, X(R)l’\ag
has enumerable common tangents with a hyperbola-like
analytic curve whose asymptotes are two straight lines
passing G, and all the divergence centers on 38 are

nodes of 88.

6.2. Quadratic case. If N = 2, both g's are normal

and complete (irrespective of the values of N*) and hence

(6.7) ag(gi).= au(gi> = E' (1 =1, 2)

1s reduced to an infinite closed Jordan curve. It can easily
be verified that G = % if m; = my while GAG 8(%1) if

m; >m, . Therefore, E' 1s a straight line passing G

1f m; = m, while it--1s a non-analytic curve as was described

in § 6.1 if my # my .

Kl

.6.3. Main part of ag; If M 2 3, every nelghborhood

aof an arbitrary point on~ 38 contains an infinite number
of closed Jordan curves. Wé shall call each of these closed

Jordan curves a Jordan component of 38. From Julia's

Theorem II, the exterior (with respect to 8) of every

Jordan component contalins at least one convergence region
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toward another stable fixed point. Hence the closed curve

is an invariant figure of It[¢] if and only if its exterior
contains anothef domain of direct convergence, i.e., if and
only if it is an infinite Jordan curve. Such a Jordan

component of 88 will be called a main component of 88

and the union of all the main components of 38 will be

called the main part of 88.

(7) Both a main component and the main part of 88 are
minimal figures of It[¢], the main part being the kernel
of the union of all the Jordan components of ag.

Note that 88 is a tree-like chain of infinitely many

closed curves and the tops of its infinitely many "twigs"

do not belong to any Jordan component.

On the other hand, the followlng propositions are proved
by the same reasoning =s.was used in the proof of Theorem
5.8.

(8) If M 2 3, 88 has M - 1 main components.

(9) Each of the main components of 88 contains only one
\ and on-1 A's (n 2 2), their arrangement being the
same as that on the boundary of a normal g.

Furthermore, the foregoing description on the shape of the

boundary of a normal 8 applies also to the shape of each

main component of 38 in this case. Hence a normal 8 can
be considered as a speciql B whose boundary consists of

only one main component.

6.4. Mechanical sketching. Based upon the above proper-

ties of Newton's method for polynomial equations, we have
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schemed a process of making a sketch of the convergence
reglons mechanically. First, we obtain numerically all

the zeros of f, all the critical points of ¢ and all

the divergence centers of a few lowest orders. Then, we
draw smooth curves each of which contains divergence
cénters of lowest orders on a main component of 38 and

1s asymptotic to a pair of half-straight lines starting
from G. Let the union of all such curves be denoted by

e and ¢_,(Ty) by ‘Tp. Then Tn gives a sketch of

{BEI 0 £ k £ n} and, among the parts of T, approximating
BE's~, those for lower values of k will approach their
exact form as n 1increases --- theoretically, at least.

In practice, we cannot draw too microscopic details of the
convergence regions. We have omitted them 1n the process of
numerical calculation through neglecting such divergence
centers that are too close to those of lower orders.

If we calculate all k's parallel to Ty and plot
their locations (except those which are too close to Pk)
with appropriate symbols, most remarkable convergence regions
toward each zero of 'f will be discriminated from those
toward other zeros. (See Figs. 2--5, where the cénvergence
regions toward a‘ fixed point identified by a numeral are

distinguished by the same small numerals at y's in them.)

6.5. Equations whose roots are all simple. If N = N¥,

the critical points of ¢ are zeros of ff" and %'s are
zeros of f'. On the other hand, ¢(z) = W # z 1is equivalent

to [f(z)/(z - H)]' =0 1if % is a simple zero of f.

25



Hence follows the following property of It[¢].

(10) If all the zeros of f are simple, then
1° 8' is normal if no zero of f" 1is in 1it,
2° D is cqmplete if all the zeros of f" are in it,
3° the gravity center of all the critical points of @

is G, '

4o the gravity center of all the %'s is G,
and

5° the gravity center of all the g's contained in

U(u.) 1is
0l .
def
(6.7) I uy/(N - 1) £tay
JFL
We may restrict ourselves to the cases where G = 0
without loss in generality, since the other cases are

obtained simply by parallel diSplacements therefrom.

Example 7. In case f(z) = z3 + pz +q , where p and g

are real constants satisfying A = 4p3 + 27q2 # 0 , the
origin coincides with G and the only zero of f". So g
is complete or normal according as it contains 0 or not.
Since all the coefficients of ¢ 1is real, o must be real
if 8(%) 9 0, which happens only when pA > 0. The boundary
of the complete 8 is E' so that each of i1ts two main
components must colncide with the boundary of a normal 8 .

If pA < 0, then we have p < 0 so that there are two
real A's, one of which must be a common boundary point of
two g'sv toward conjugate complex zeros of f.

If pA = 0, the origin is the only } which must be

common to the boundaries of all the three 8'3.
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Thus in this case, there are four types of global

convergence features of It[¢] as shown in Fig. 2.

33 - 20z -25=0

3 -aao (a > 0)

R R P S e e R

Fig., 2. Four types of global convergence features of Newton's method

applied to the equation z3 +pz+q=0 , where p and ¢
are real and satisfy A = 4p3 + 27q2 #0¢: i) p<0, A<O0;
ii) p>0, A>0; iii) p=0, A>03; iv) p<0, A>0.
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In case

Example 8.

origin is the only zero of f"

same time. Hence all the g's
Theorem 5.5, the origin-is

common to the boundaries

of all the g's and all
the ?'s. .Every U has
one ? if N = 3, and
N-2 D's if N 2 b,

Every finite divergence

center is therefore common

£(z) = zV

- a (a#O,N;?:),the
and the only ? at the
are normal and, from
N
’;4@\

0

e ]

]

E ]
M (3)
[ ]

Y 11

] ]

]

\ ]

: '

bz '

'

'

g

A AR
A BN
D 3 BN
to the boundaries of Ty : 4
N + N(N - 2) = N(N - 1) Fig. 3
convergence regions. (See Convergence regions of Newton's method
' 4 _ 4 =
Fig. 2 iii) and Fig. 3.) applied to =z a=0, where a 1is
N i a positive real constant.
Example 9. In case f(z) = zN - az (a # 0, N 2 3), the
origin is the only zero of f" and a root of f = 0 at the
same time. Therefore, 8(0) is complete and the other g's
are all normal. From (8), the main part of 38(0) consists

of N - 1 components,

boundary of another D because

number of ?'s being

to the boundaries of two

B's

every finite divergence center is common td

components of 88(0) = E'.

this Case,

(N - 1)(N - 2), every A

(See

each of which must coincide with the

3p(0) = E'. The total
is common
and N - 2~ ?'s. Therefore,
N - 1 Jordan
Fig. 4.)

Note that, in

¢ 1s equivalent to a polynomial.
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O S A B

b ]

]
[
]
.

b
~

ii’)

Fig. 4. Convergence regions of Newton's method applied to
1) 23 -az=0 and 1ii) 2z -az =0 (a > 0).

Example 10. Let us take up the cése where f has N real

zeros uj (=1, +++, N) where N 2 3 and Wi < Hi+l -

For simplicity, g(gi) will be meant by Bi . It is known

A

that Di contains only one zero of f" if 2 =1 SN - 1.
(cf. [71,[81.) Therefore, M =2 in D1 and Ry, whereas

M =3 in the other D's. In other words, D; and JPn are
nofmal, whereas the boundary of each of the other g's has
two main components. FEach of the main components crosses

the real axis at % which is a simple zero of ', wherefrom
it can be proved that agi shares a main component with
381+10 Every divergence center on agi (2 £1 &N =-1) is

common to a pair of Jordan cohponents of 9Pj- (See Fig. 2

i), Fig. 4 i) and. Fig. 5.)
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Fig. 5. Convergence regions of Newton's method applied to
z% - 1522 - 10z + 24 = 0 whose roots are all real.
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0. Introduction
The present paper 1s concerned with the multi-point boundary
value problem for nonlinear Volterra integrodifferential equations.

Let
d t
(0 1) gex(t)=r(e,x(e), | a(t,5,1(s))as)

be a given system of nonlinear integrodifferential equations
subject to a given multi-point boundary condition

N
(0. 2) iZOLi¥(ti)=l.
Here x(t) 1is the unknown vector valued function of t defined on
the interval J={t|-1<t<l}. Denote that S={(t,s)|-1<s<t<1}. Assume
that f(t,x,y) and g(t,s,x) are vector valued twice continuously
differentiable functions of (t,x,y) and (t,s,x) on the domains
JxDxE and SxD respectiveiy,where D and E are bounded open domains
in the Euclidean space with the Euclidean norm )| || which satisfy
the relation |
(0. 3) {x|l xh<2max{llg(t,s,x)|| | (t,s,x)eSxD}}CE.
Moreover assume that Li(i=0,l,---°-,N) are square matrices, £ 1s a
“vector and t1(1=0,1,-----,N) are given polnts belonging to the
interval J such that

-1=t

<t <ooooo<t =1.

0 "1 N
It is clear that our boundary value problem includes as the
special cases Cauchy problem, two-point boundary value problem

and Hukuhara's problem.
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The system of linear integrodifferential equations which

corresponds to the system (0. 1) 1s written in the form

t
(0. 4) g—tx(t)=A(t)x(t)+I 1B(t,s)x(s)ds+h(t),
where A(t) and B(t,s) are square matrix valued continuous functions
of t on the interval J and 6f (t,s) on the domain S respectively
and h(t) is a vector valued continuous function of t on the
interval J.

In the present paper we shall construct the Green function of
the multi-point boundary value problem (0. 4) and (0. 2). The
Green function plays an impotant role in studying approximate
solutions of the.nbnlinear integrodifferential equations (0. 1)
and the boundary condition (0. 2). We shall prove three main
theorems on approximate solutions of the boundary value problem
(0. 1) and (0. 2). The first theorem; Theorem 4.1, says that for
any isolated solution there exists an approximate solution
accurately as it 1s desired by computing finite Chebyshev
polinomial series. The second theorem, Theorem 4.2, says that the
obtained Chebyshev approximate solution corresponds one to one to
the 1solated solution. The third theorem, Theorem 4.3, says that
one can always assure the existence of an exact solution by
checking several conditions on the obtained Chebyshev approximate
solution and further it gives a mgthod to obtain an error bound

of the obtained approximate solution.

The analogous theorems were originally proved by M. Urabe [5],



[6] concerning the multi-point boundary value problem for nonlinear
differential equations. Later concerning nonlinear integral
equations, the theorem analogous to Theorem 4.3 was proved by
M. Shimasaki and K. Kiyono [2] and the theorems analogous to
Theorem 4.1 and Theorem 4.2 were proved by the author [7] especially
for nonlinear integral equations of Fredholm type. On the other
hand K. Tsuruta and K. Ohmori [3] proved the theorem analogous to
Theorem 4.3 concerning the Cauchy problem for nonlinear integro-
differential equations and gave some examples of the numerical
solutions with thelr aposteorl error bounds.

Throughout the present paper we denote Euclidean norms for
vectors and matrices by the symbol || “. Moreover for any vector
valued function x=x(t) continuous of t on the interval J we use

two kinds of norms uxHC and nx"Q which are defined as follows

(0. 5) xflg=max{llx(t))l |teI}
and
1
(0. 6  |xlgry el =637 2a0 312,

In order to prove Theorem 4.1, we use the following lemma
proved by M. Urabe [4] based on Newton-Raphson's procedure for
nonlinear algebraic equations.

Lemma 0.1 Let
(0. T) F(a)=0

be a given real system of equations, where o and F(a) are voctors
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of the same dimension and F(a) is a continuously differentiable
function of o defined in some region Q@ of the a-space. Assume
that the system (0. 7) has an approximate solution a=8 for which
the determinant of the Jacobian matrix J(a) of F(a) with respect
to o does not vanish and that there are a positive constant § and
a nonnegative constant k<1l such that

(1) 2,={a|lla-algs)C,
(0. 8) (2) "W(a)-J(aM <k/M  for any a€f,

(3) Mr/(1l-«k)<$6,

where r and M are numbers such that
(0. 9)  IF(&)M<r and o™t (el <m.
Then the system (0. 7) has one and only one solution a=a in QG

and for a=a it holds that

(0.10) detJ (a)#0 and fa-all<Mr/(1-k).

1. Some Properties of Chebyshev Series
Denote by Tn(t) Chebyshev polynomial of degree n, that is,

(1. 1) Tn(t)=cosne as t=cos®

for n=0,1,2,¢¢¢¢¢, Then 1t 1s well known that for any continuous
funetion x(t) of t on the interval J we have Chebyshev polynomial

series expansion of the form

(1. 2) x(t)=nZOenanTn(t),



where

(1. 3) eo=l and en=|/-2- for n=1,2,°¢°*°°

and

1

(1. ) an=%enj x(t)Tn(t)(l-t2)-l/2dt.

-1
For the expansion (1. 2) we obtain the Parseval's equality of the

form
2_ T 2
(1. 5) hxlio= Y lla N
Q n=0 o
In particular for finite dhebyshev series of the form

m
(1. 6) xm(t)=n£oenanTn(t)

we have

1.7 dxplig=lel and x| <v2m+Tle |,

where a=(ao,a ---o-,am). In fact the inequalities (1. T) are

1°
proved making use of the Parseval's equality (1. 5) and Schwarz's
inequality. .

Suppose that x(t) is a continuously differetiable function
of £t on the interval J. Let the Chebyshev pblynomial series of the

derivative of x(t) be

d (t)e § e at
dtx(t)-nzoenanTn(t).

Then it is easily proved that

(1. 8) (/§/en_1)aﬁ_l-aﬁ+l=2nan (n=1,2,%0¢9°),
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where a, (n=1,2,*++++) are the coefficients of the expansion
(1. 2) of x(t). Moreover making use of the relation (1. 8), we
obtain |

(1. 9) al=/2e_ Z (n+2p-1)a, o ;-
p=1

We defline the operator Pm which expresses the truncation of

the Chebyshev polynomial series (1. 2) of the operand discarding

the terms of the order higher that m, that 1s, for any continuous

function x(t) of t on the interval J expanded in the form (1. 2)

(1.10) (P x)(t)—nzoenanTn(t)

If x=x(t) is a continuously differentiable function of t on the

interval J, it 1s proved that for m=0,1,¢cce°-

(1.11) N(z-p_)xl| 2o (m) f(z-P__, dt“Q_o(m)IldfgllQ,

(1.12)  [(I-P)xl|gzo, (m) WI-2 1 )GElo<oq (mISEl s

(1.13) (S (T-P ) xl| gx(m+2) (TP, dt el ICT-Bp 44 dth
and

(1.18)  J§pca-p x| @72l -p Gl IR 05 -

Here and hereafter I 1s the identity operator, P_1=0 and o(m) and

ol(m) are monotone decreasing functions of m satisfying
(1.15) Y2/(m+1)<o(m)<v2/m and 0, (m)=1/(m+1).

These properties of Chebyshev polynomial series are proved in

detail in the paper by M. Urabe [6].



2. Linear Integro-Differential Equatilons

In the present section we study a system of linear integro-

differential equations (0. 4). We put
t
(2. 1) Q(t,s)=A(t)+IgB(t,s)ds
and consider the matrix equation
t

(2. 2) R(t,s)=I+JSR(t,u)Q(u,s)du
on the domain S. It 1s well known that there exists uniquely the
continuous function R(t;s) satisfying the equation (2. 2). R(t,s)
is also the unlque solution of the adjoint equation

3 t
(2. 3) B—S-R(t,s)=-R(t,s)A(s)—ISR(t,u)B(u,s)du
satisfyling the condition
(2. 4) R(t,t)=I (identity matrix)
on the domain S. The function R(t,s) 1s called Resolvent matrix
with respect to the matrices A(t) and B(t,s).

We introduce the followlng lemma proved by Tsuruta K. and
K. Ohmori [3].

Lemma 2.1 The resolvent matrix R(t,s), which is the
unique solution of the equation (2. 3) satisfying the condition
(2. 4) on the domain S, 1s differentiable with respect to t and
satisfies the equation

£ -
(20 5)  LeR(5,8)A(6)R(,8)+[ B(t,wR(u,5)au.

S
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Let us consider the Cauchy condition

(2. 6)- x(-l)=x0.

Then we shall prove the following lemma.
Lemma 2.2 For any vector X, and any continuous functilon
h(t) the system (0. 4) subject to the condition (2. 6) is

equivalent to the system
t

(2. 7 x(t)=R(t,-1)xo+J R(t,s)h(s)ds
-1

on the interval J.
In fact, similarly to the proof by Grossman S. I. and R. K.
Miller [1], for any solution x=x(t) of the system (0. U4) satisfying

the condition (2. 6) we have
ft {R(t,s)3x(s)+[2=R(t,s)Ix(s)}ds
-1 " ’ds 9s 4

s=t

=[R(t,s)x(s)]1 _ 4

=x(t)-R(t,-1)x0.

Then it follows from the equation (2. 3) that

t
x(t)-R(t,—l)xo—I R(t,s)h(s)ds

-1
It

S
R(t;s)[A(s)x(s)+J B(s,u)x(u)du+h(s)Jds
-1 -1

+It [& R(t s)]x(s)ds-It R(t,s)h(s)ds

-1 s L -1 ’
t t 3

=J [R(t,s)A(s)+I R(t,u)B(u,8)dutd-R(t,s)Ix(s)ds
-1 ' s

=0.
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Conversely if x(t) solves the system (2. 7), it follows from the

equation (2. 5) and the condition (2. 4) that
d t
aEx(t)—A(t)x(t)—J B(t,u)x(u)du-h(t)
-1

t
=—gTR(t ’_l)xo"'f-l%_:R(t,S)h(S)dS"‘h(t)

t
-A(t)[R(t,-l)x0+f lR(t,s)h(s)ds]

t u
-[ B(t,u)[R(u,-l)xO+I R(u,s)h(s)ds Jdu-h(t)
-1 -1
3 t
=[§ER(t,—l)-A(t)R(t,—l)—I BCE,WR,-aulx,
t 3 t
+f [§ER(t,S)—A(t)R(t,S)-I B(t,u)R(u,s)dulh(s)ds
-1 s
=0‘
It 1s clear that x(t) satisfiles the condition (2. 6). This
completes the proof of Lemma 2.2.
We shall construct the Green function H{t,s) for the system
(0. 4) and the multi-point boundary value condition (0. 2).
Lemma 2.3 Let R(t,s) be the resolvent matrix with

respect to the matrices A(t) and B(t,s). If the matrix

N
(2. 8) G= Z LiR(ti,-l)

i=0

is nonsingular, then for any constant vector & and any continuous
\

function h(t) the system (0. 4) subject to the condition (0. 2)

is equivalent to the system

a1



1
(2. 9) x(t)=R(t;-1)G'1z+I H(t,s)h(s)ds,
-1

where for t §t<tk (k=1,2,¢°°++,N)

k-1=
-1 N :
-R(t,-1)G inLiR(ti,s)+R(t,s);tp_l;s<tp
(p=1’2,oooan’k_l)
-1 N
-R(t,-1)G iEkLin(ti,s)m(t,s);tk_lis«c
(2.10) H(t,s)=
-1 N
-R(t,-1)G ~ ) LyR(t,,s) ;E<s<t,
i=k
-1 N
-R(t,-1)G iZbLiR(ti,s) 3t _qSs<ty

(p=k+l’ooo.o’N).

In fact, by Lemma 2.2, for any constant vector x, any solution

0

of the system (0. U4) satisfying the condition (2. 6) 1is expressed
in the form (2. 7). The solution (2. 7) satisfies the boundary

condition (0. 2) if and only if

N N t

2= Z Lyx(t,)=Gx,+ y LiJ

iR(ti,s)h(s)ds.
i=0 i=0

-1

Singe G 1s nonsingular by the assumption, we obtain

N ot A
(2.11)  x.=G"tg-¢"1 § Lij 1R(ti,s)h(s)ds.

0 1=0
Substituting (2.11) into (2. 7), we have the desired eguality
(2. 9) with the function (2.10). This completes the proof of
Lemma 2.3.

The function H(t,s) in (2.10) 1s called Green function for

42



the multi-point boundary value problem (0. 4) and (0. 2) or
Green function with respect to the matrices A(t), B(t,s) and L1

(1=0,1,¢+++« ,N). If we put
1

(2.12) x(t)=[ H(t,s)h(s)ds,
-1

then x(t) satisfies the equations (0. 4) and the homogeneous
boundary condition

N

L

X Lix(ti)=0

0
by Lemma 2.3. Therefore the expression (2.12) defines a bounded
linear mapping in the normed space C(J) which is deflned to

consist of all continuous vector valued functions of t on the
interval J. For brevity we express (2.12) in the form

(2.13) x=Hh, where H;C(J)»C(J).

Hereafter the mapping H defined in (2.12) or (2.13) is called
H-mapping with respect to the matrices A(t), B(t,s) and Li (i=0,1,
eesee N). It it noted by Lemma 2.3 that the H-mapping can be

always defined so far as the matrix (2. 8) is nonsingular for the
resolvent matrix R(t,s) with respect to A(t) and B(t,s) and the
matrices L, (i=0,1,¢+¢++,N). The norms of the H-mapping are defined
corresponding to the norms (0. 5) and (0. 6) of vector valued
functions belonging to the space.C(J). Hence we have two kinds of

norms “an and "H“Q, which are defined in the usual ways in normed

spaces.
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3. Isolated Solutions

We return to our multi-point boundary value problem (0. 1)
and (0. 2) under all assumptions written in the section 0. Denote
by C(J;D) the space of all continuous vector valued functions of
t on the interval J lying in the domain D for any t€J. Let
(3. 1) £ (t:%,¥), fy(t,x,y) and g (t,s,x)
be Jacobian matrices of the functions f(t,x,y) and g(t,s,x) with

respect to the varlables x, y and x respectively. We define for

any function x=x(t)€C(J3;D) the functions

t
¢(t;x)=fx(t,x(t),J g(t,s,x(s))ds),
-1

t
W(t,s;x)=fy(t,x(t),[ g(t,s,x(s))ds)gx(t,s,x(s)),

where we note that for any function x=x(t)eC(J3;D) and for any ted
t .

the vector J g(t,s,x(s)dseE by the relation -(0. 3).
-1

Let x=%(t) be any solution of the system (0. 1) satisfying
the condition (0. 2) lying in the domain D for any t€J. The system

of linear integrodifferential equations
a t
(3. 3)  Sev(mm=etesRy(e)+] ¥(s,830)(s)as
-1

is called the first variation equations of (0. 1) with respect to
the solution x=%(t). When we denote by'ﬁ(t,s) the resolvent matrix
with respect to the matrices ¢(t;R®) and ¥(t,s;R), the solution

x=%(t) 1s called isolated solution of the boundary value problem



(0. 1) and (0. 2) if the matrix
(u>6§ﬁ< )
3. = L t,,-1

1=0 i i

is nonsingular. The word "isolated" comes from the following fact.

Lemma 3.1 If the matrix (3. 4) is nonsingular, then,
besides the solution x=2(t), there is no other solution of the
boundary value problem (0. 1) and (0. 2) in a sufficiently small
neighborhood of x=8(t).

The above lemma can be proved in the following way. Since ﬁ
is nonsingular, by Lemma 2.3, there 1s the H—mapping'ﬁ with respect
to the matrices ®(t;X), ¥(t,s;R) and Li(i=0,l,-----,N). Let us
take a poslitive number € so that
(3. 5) e<1/3“H“C-

For such €, by the uniform continuitles of the derivatives of the
functions f(t,x,y) and g(t,s,x) and by the definitions of &(t;%)
and ¥(t,s;®) in (3. 2), there exists a positive constant & such
that

(3. 6) U={x]]| x-R(t)||<8 for some teJ D

and

(3. 7) Ne(t;R+z)-2(t;8)|| <e for any te&J

and

(3. 8) l¥(t,s,8+z)-¥(t,s;R)|l<e for any (t,s)eS

for any z=z(t)€C(J3;D) satisfyingllznc
Suppose that, besides x=2(t), there 1s a solution x=x(t) of

the boundary value problem (0. 1) and (0. 2) satisfyingl(xJQHC;G.v
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Then if we put
(3. 9)  y(t)=x(£)-2(t),

we have
(3.10)  [yflo2s>
N
(3-;1) iZOLiy(ti)=0
and

t
(3.12)  GE()=£(t,x(6), ] 8(t,s,x(s))as)

: t
-f(t,ﬁ(t),f g(t,s,®(s))ds).
-1
Using a mean value theorem, we rewrite (3.12) in the form

1 t
(313)  Sy(o)=[ Tocss240y)y(e)+| ¥(s,5540y)y(s)ds]an
' 0 -1

t
=¢<t;x>y<t>+j RICRE MO0

where

1
h<t>=-JOC¢(t;2>-o<t;x+ey>Jy(t)de.

1.t
-I I [¥(t,s;R)-¥(t,s;R+0y) Jy(s)dsde.
0/ -1

Noting that for any 6€[0,1] R+0y=R8+0(x-R)€C(J;D), that is,
HGyHC;G, we have by (3. 7) and (3. 8)

Inllgzellylig*2ellyll =3¢yl -

On the other hand, by Lemma 2.3, for the equatilons (3.13) and



the boundary condition (3.11) we have
; 1.
y(t)=j H(t,s)h(s)ds.
_ -1
Thus.it follows that
1y o BN G Wl o< 3€ WMl 5 vl -
By the inequality (3. 5) this implies that
ivllc=0>
that is,
y(t)=0 for any té€J.

This'completes the proof of Lemma 3.1.

L, Main Theorems

In order to obtaln an approximate solution of the multi-
point boundary value problem (0. 1) and (0. 2), we consider finite
Chebyshev polynomial series with unknown coefficients ao,al,-----
580 that are

m
(4. 1) xm(t)=n§0enaHTn(t)'

Here Tn(t) (n¥0,1,***++) are Chebyshev polynomials defined in
(1. 1) and e, (n=0,1,¢°+¢+) are constants defined in (1. 3). It

is reasonable to determine the m+l coefficients ao,a ceecsan in

1,
the finite Chebyshev polynomial series (4, 1) so as to satisfy

the conditions that xm(t) lies in D for any t€J and that

t
(4. 2) %Exm(t)=Pm_l[f(t,xm(t),I_lg(t,s,xm(s))ds)]

a7



and
(4 ) § (t,)
.3 L.x (t,)=2%,
q=g 1+ m 1

where P 1is the truncation operator defined in (1.10). In what
follows the finite Chebyshev polynomial series (4. 1) satisfying
(4. 2) and (4. 3) is.called Chebyshev approximation of order m.
In the present paper we shall prove the following three main
theorems.

Theorem 4.1 Suppose that there exists an isolated
solution x=2(t) of the boundary value problem (0. 1) and (0. 2)
lying in D for any t€J. Then for some sufficiently large m, there
exists a Chebyshev approximation x=im(t) of any order m2m such

that
% (t)+%(t) and 9% (t)-Lg(t)
m dt ™ m dt

uniformly on the interval J as m»»,

Theorem 4.2 The Chebyshev approximation x=§m(t) stated
in Theorem 4.1 is determined uniquely in a sufficiently small
neighborhood of the solution x=2(t) provided that the order m of
the Chebyshev approximation x=§m(t) is sufficiently high.

Theorem 4.3 Assume that the boundary value problem (0. 1)
and (0. 2) has an approximate solution x=x(t), for which there are
a positive constant §, a nonnegative constant k<l and the matrices
A(t) and B(t,s) continuous of t on the interval J and of (t,s) on

the domain S respectively such that



(1) G-iZOL R(t;,-1) is nonsingular

(2)  U={x|Nx-x(t)||<8 for some te€J}D
(4. 4) ¢ (3) “@(t;x)-A(t)“;x/ZMl for any té&€J and any xeC(J,U)
(4) “W(t,s;x)-B(t,sn(;K/MMl for any (t,s)€S and
for any x&C(J,U)
(5) (Mje+MT)/(1-K)<8.

Here R(t,s) is the resolvent matrix with respect to the matrices
A(t) and B(t,s). ¢(t;x) and ¥(t,s;x) are the functions defined in
(3. 2) by use of the Jacobian matrices of the functions f(t,x,y)

and g(t,s,x). Ml and M2 are constants satisfying
(4. 5) "HH <M, and IR(t, -l)G-1H<M for any té&J

respectively, where H is the H-mapping with respect to A(t),

B(t,s) and Li(i=0,l,-----,N). r and € are constants satisfying the

inequalities
t

(4. 6) “dtx(t) -f(t,x(t), I g(t,s,x(s))ds)| sr for any te€J
-1

and

(4 ) I ? X )-2]

B, 7 L.Xx(t,)-%]<e.

120 11 =

Then there exists uniquely an exact solution x=%(t) of the
boundary value problem (0. 1) and (0. 2) 1lying in U for any teJ.
Moreover this is'an 1solated solutlion and it holds that

(4. 8) Ix(t)=x(t)| <(M  e+M,r)/(1-k) for any ted.

The proof of these theorems are given later in the present

paper.
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The coefficlents a=(a0,a -°--~,am) of our desired Chebyshev

1’
approximations x=xm(t) in (4. 1) of order m are determined by the
equations (4. 2) and (4. 3) if xm(t) lies in D for any ted. The
equations (4. 2) and (4. 3) are equivalent to the system of

nonlinear algebraic equations
()-l. 9) F(m)(a)=(F0(a),Fl(a)’poocn’Fm(a))=0,

where

N

(4.10) Fo(a)= Z Lixm(ti)-z

i=0

and
t a
(4.11) Pm_l[f(t,xm(t),J-lg(t,s,xm(s))ds]-agxm(t)

me1
=nzoenFn+l(a)Tn(t),
which implies by the expressions (1. U4) and (1. 9)
t

1
(4.12) Fn(a)=%en_lj_l[f(t,xm(t),[-lg(t,s,xm(s))ds)Tn_l(t)

X(l—tz)-l/z]dt-lﬁén_l ) (n+2p-2)a

p=1 n+2p-2

for n=1,2,+¢+¢+,m. The system (4. 9) is called determining equations
of Chebyshev approximations. For a solution a=(50,51,---.1,5m) of

the syvstem (4. 9) the finite Chebyshev polynomial series

is a Chebyshev approximation of order m.
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5. Inequalities for Determining Equations

Suppose that x=2(t) is an isolated solution of the boundary
value problem (0. 1) and (0. 2) lying in D for any t€J. There
exists a positive constant § such that
(5. 1) U={x||x-2(t)]|<6 for some t€J}CD.

Denote that ﬁm=Pm2. It follows from the inequalities (1.11)-(1.1%,

that

(5. 2) I\Rm—ﬁllcs__Klo(m)/m(m—l),

(5. 3) “ﬁm—ﬁ“Q;Kl/(m+l)m(m—l)

(5. 4)  15er -5l <K, [(m+2) /m(m-1)+0 (m+1)/ (m+1) ]
(5. 5) | grn-getllqsK, [/AF2/V2m(n-1) 41/ (m+2) (m+1) 1,

where K1 is a constant satisfying
(5. 6) ﬂd3 I Ild2 £(t,8(t) ft (t,s,%(s))ds)|| <K
. —=X|| A= g(t,s,&(s s <K, .
at3 9 "gg? 7T 7N =1

Kl may depend only on the structure of the given system (0. 1).
Hereafter we denote by K's the constants depending only on the
structure of the given system (0. 1).

In order to determine a domain where the function F(m)(a)
of the system (4. 9) of determining equations is well defined, we

choose the number m sufficiently large such that

(5. 7) K,o0(m)/m(m-1)<§  for any mm,.
This is possible by the properties (1.15) of the constant o(m).
Then it tollows from the inequalities (5. 2) and (5. 7) that

Rm(t)eUCD for any teJ.
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Let us put
m
(5. 8) xm(t)=(1>mx)(t)=nzoenanfrn(t)

and

(5. 9)  =(84,8 %" ,8,).

Define the domain
(5.10) g ={a|la-8ll<[§-K 0(m)/m(m-1)]1/V2m+1}.

The domain Qm is the desired domain where the function F(m)(a) is

well defined. In fact, if we put for any vector a=(ao,a --°°',am)

l,
belonging to the domain Qm

m
xm(t)=nzoenanTn(t),

then we obtailn

xm(t)6UCD for any teJ

since for any t€J

=z (£)-R(6)]| < I ()= (6D +l[R (£)-R(E)]]

</2ZmiT fa-af+lz_-%|l,

2/2m+1[8-K,0(m)/m(m-1)]/v/2m+1+K,0(m)/m(m-1)=8

by the ineaualities (5, 2) and (1, 7). Therefore 1t follows from
the expression (4.10) and (4.12) that the function F(m)(a) is
continuously differentiable of a on the domain Qm.

Let Jm(a) be the Jacobian matrix of thevfunction F(mZ(a). Tc
investigate the properties of the matrix Jm(a), we consider a

system of linear equations of the form
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(5.11) Jm(a)€+Y=0,

where a=(ao,a -----,a“ﬂeﬂm,

l,
) £=(u0’u1’.....’um) and ’Y:‘.(co’cl’ooooo’cm).

Let us put that

m
xm(t)=n£0enanTn(t)éU<D’

m-1

m
y(t)=nZOenunTn(t) and h(t)=hzoencn+lTn

(t).
Then we can prove that the system (5.11) is equivalent to the
boundary value problem
N
(5.12) iZOLiy(ti)=‘00
and

t

(5.13)  Sy(e)=p,_1Tee3x)y(8)+[  ¥(e,85%)v(s)as]+n(s),

=1
where ¢(t;x) and ¥(t,s;x) are the functions defined in (3. 1)
and (3. 2).

Substituting Rm(t) into xm(t) in the equations (5.13),

equivalently doing 8 into a in the system (5.11), we obtain
.t
(518 Fey(e)=a(e;R)y(E)+] ¥(t,850)3(s)dsn(e)+n(s),
-1
where
£
(5:15)  p(6)==(I-F,_)[e(5;R0y(6)+]  ¥(t,852)y(s)ds]
. -1

t
‘—Pm_l{[Q(t;i)—@(t;ﬁm)]y(t)+I [¥(t,s;8)-¥(t,s;8 )ly(s)ds].

-1
53



Let’ﬁ(t,s) be the resolvent matrix with respect to the

matrices ¢(t;%) and ¥(t,s3;%). The matrix
N
n
G= ) L,R(t,,-1)
120 i i

is nonsingular from the 1isolatedness of the solution x=%(t).
Then, applying Lemma 2.3 for the boundary value problem (5.12)
and (5.14), we have

~ A=] 1 ~

y(t)==R(t,-1)G cot H(t,s)[h(s)+p(s)]lds,
-1
where'ﬁ(t,s) is the Green function with respect to the matrices
d(t3R), ¥Y(t,s;R%) and Li(i=0,l,-----,N). Denote by H the H-mapping
elth respect to the above matrices. This implies that
AN .

(5.16) NyﬂQ;MlﬂconfHHHQ(“hNQ+HpHQ)a

where

M1=max{“ﬁ(t,—l)a—1“ltéJ}-

On the other hand for the function (5.15) we have

t

Hqusol<m-1NI%;[@(t;x)y(t>+j ¥(t,s;%)y(s)asllly

-1
+Hile(esR)-e (e )Iy(t)

t
IRATCUID IR REMEOLE A

by the inequality (1.12) and the Parseval's equality (1. 5).
Moreover using Schwartz's inequality and a mean value theorem,

we obtain
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A t '
ggte(5s00y(0)+] ¥(e, 530y (a)asllg

-1

R ICTE SN Ca]

. |
HloCes0)ep, 1 To(632 )y (804 ¥(b,552 )y (s)dsIen(6)}] g
-1

ty
+“W(t,t;?)y(t)+[ (5€W(t,s;21)y(s)dsHQ
-1 ’

<KllyligHEgnllg

and

t
oo cos)-0 (o520 Iy (o)

(B33 -¥ (6,552, ) Iy (s)asf

;Kuﬂﬂ-ﬁmﬂcny“Q-
Then for the inequality (5.16) we have
9l =iyl el +IRH G (140, (m-1)K ) |l
+HﬁﬂQ[K2ol(m—l)+Kn0(m)/m(m—l)]"y“Q

using the inequality (5. 2). If we choose a number ngml

sufficlently large, then we have for any m;m2

. 5 ATD 5 5 5
(5.17) - ;JM1+"H“Q(1+°1(m‘1)K3) Jucou +“huQ
0 Q=

1-||Ellg[Ky0, (m-1)+Ky0 (m) /m(m-1) ]

2 2
M flleoll Z+Hinlg,
where M is a constant independent of m. The inequality (5.17) is

equivalent to the 1lnequality
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(5.18)  Helzmliy)]

by the Parseval's eqiality (1. 7) for the finite Chebyshev
polynomial series y(t) and'h(t). From the inequality (5.18) and
the relation (5.11) it readily follows that for any m2m,
(5.19) det J_(8)#0

and

(5.20) a7 t@)fem.

Fad

The inequality (5.20) will play an impotant role in the proof o:
Theorem 4.1.
Let

a':(ab,ai,. eooe ’ar;l) and a".—_(ag’a",oo coe ,a;r'l)

be arbiltrary vectors belonging to the domain Qm. For any vector

E=(u0,u1,-----,um) we conslder the systems of linear equations
(5.21) IJa(a')e=y' and J_(a")E=y",
where

Y'=(c6,c',-----,cé) and y"=(cg,cy, v ",cn).

Let us put

m m
xé(t)=nzoenaﬁTn(t), x;(t)=n£0enang(p),

m
y(t)=nzoenunTn(t),

m

i m
h'(t)=nZOencﬁ+lTn(t) and h"(t)=nzoencg+lTn(t>.



Then, corresponding to the systems (5.21), we have

N
Lok (Ba)=eg

(5.22) .
%gy(t)=Pm_l[¢(t;Xé)Y(t)+I_lW(t,S;xa)y(s)ds]+h'(t)

and
N

(5.23)

t
Gev (0)=r g [0Cesxy(0)+ ] ¥(6,85m0)y () as e (5)

respectively by the definition of Jm(a). From (5.22) and (5.23!
it readily follows that

(5.24) 06=c8

and

(5.25)  h'(t)=h"(t)=-P,_; {[e(t;x})-e(t5x") Iy (¢)

t
+J [Y(t,s3x')-¥(t,s;x")]y(s)ds}.
-1 m’ . m
The relation above implies that
e}
“h'-h"“Q;KS"Xé Xm"CHYHQ-

Then by the relation (1. 7) and (5.24) we obtain
Iy ' =v")| <Ky v2mFT et —a" i E),

which implles from the systems (5,21) that for any m;mg and any

o', a"eq
y | m

(5.26) g (a")=J (") <K, V2nFT]ja’~a") .
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The inequality (5.26) will also play an impotant role in the

proof of Theorem 4.1.

6. Proof.of Theorem 4.1

Suppose that there exists an 1solated solution x=%(t) of the
boundary value problem (0. 1) and (0. 2) lying in D for any te&dJ.
It is concluded that in the previous section 5 that there exists
a positive constant 8 satisfying the relation (5. 1) and a number

m, sufficiently large such that for any m>m, the inequalities

2
(5. 2)=(5. 5) hold and such that the function F™ (a) of the
determining equations (4. 9) is continuously differentiable of a
in the domain Q and its Jacoblan matrix J _(a) has the inverse
J%l(a) at o=8 satisfying the lnequality (5.20) and satisfies the
inequality (5.26), where ﬁm) @ and Qm are defined in the formula
(5. 8), (5. 9) and (5.10) respectively.

Let us put

N

(6. 1) ZOLiﬁm(ti)-2=ro

1

and
) d t
(6:2)  Gprg()=py 1 L8(6, 2,00, a(r,5,8,(9))as1=n(6).

Using the inequality (5. 2), we have for the relation (6. 1)

N N N
(6. 3) Mrou=u1§0Lixm<ti)-.Z Lix(ti)n§<1g

i=0

O"Lill)Klo(m)/m(m-l).



We rewrite the equation (6. 2) in the form

42 (t)- d g (1))

h(t)= {dt m

t
+<1-Pm_l)[f<t,2(t>,j (8(5,5,2(5))as)]

(t
-P _l[f(t,ﬁm(t),J_lg(t,s,ﬁm(s))ds)

t
—f(t,ﬂ(t),f g(t,s,%(s))ds)]
-1

usihg the fact that x=2(t) is a solution of the equations (0. 1)
Then by the inequalities (5. 5), (1.12), (1. 5) and (5. 3) and a
mean value theorem used in (3.12) we obtain

(6. ) bl (<K, [¥m+2/v2m(m-1)+1/ (m+2) (m+1) ]

+K1/m(m—l)+K6Kl/(m+1)m(m-l).

It follows from the inequalities (6. 3) and (6. U4) that

(6. 5) :Jur0ﬂ2+“hné=0(m—3/2) as m.

By the definition of the function'F(m)(a) of the determining
equations (4. 9) the boundary value problem (6. 1) and (6. 2) is
equlivalent to a system

F(m)(a)=p(m)'
This implies that
o (™ =\l 2+nll5.

Then there exlsts s number ma2M, such that for any m2m.,
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(6. 6)  No™y g m=3/2

for some constant K7 by the asymptotic behavior (6. 5).

We shall apply Lemma 0.1 in the section 0 to the determining
equations (4, 9) to complete the proof of Theorem 4.1. In order
to check the condipions (0. 8) in Lemma 0.1 we choose an arbitrary
nonnegative constant k<l and put

§.,=min{k/K_M, G—Klo(m3)/m

. s -1)3,

3(m3

where constants K., M and K, are defined in (5.26), (5.20) and

52 1
(5. .6) respectively. There exists a number mu>m so that

3
[M/(l—K)]K7m'3/2<6l//§ﬁIT

for any m>m, since

m—3/2/2m+1=0(m-1/2) as mee,

If we choose a number Gm such that
=-1/2
(6. 7) [M/(l—K)]K7m <6m<61//2m+1,

then we obtain

(6. 8) 95m={a|l\a—&||;6m}(9m.

In fact, for any cxefz(s and m;m43m3
m
{ a-&l\;6m< §,/v2m+1
;[6-Klo(m3)/m3(m3-l)]//2m+l
l6-K o(m)/m(m-1)1/V2m+1,

which implies aenm
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Moreover it follows from the inequality (5.26) that

(6. 9) HJm(a)—Jm(&)";K5/2m+1“a-a“
;K /2m+1§ <K5 1< (K/KSM)=K/M
for any aeQG and any m>m,, . Finally by the inequalities (6. 6)vand

m

(6. 7) we have

(6.10) [M/(l‘K)]"D(m%\;[M/(l-K)]K7m_3/2<6m

Thus the inequalities (6. 8), (6. 9) and (6.10) show that the
conditions (0. 8) in Lemma 0.1 are fulfilled. Hence by Lemma 0.1
we see that the determining equations}(u. 9) has one and only one

solution a=a in the domain QG satisfying
m

detJ_(a)#0
and
(6.11)  |ja-aflsim/(a-) 2 o ™ <Iw/ (1) IR 0372,

If we put
&=(ao’al’...."5m)
and
x (t)= 2 e.a T (t),
neo P 0N

then x=§m(t) is a'Chebyshev approximation and satisfiles.

(6.22)  Nx -gllo<lx -2 ||l o+I1& -Rlo<r2mIl|a-a|[+||2 -2,

<[M/(1=K) ]K7m‘3/ 2/_2m+1+Klo(m) /m(m-1)
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for any m>m,, from the inequalities (1. 7) and (6.11). The
inequality (6.12) implies the uniform convergence of the Chebyshev

approximation,im(t) to the solution R(t).
'In order to prove the uniform convergence of the derivatives

of the Chebyshev approximations im(t), we have

d = d
(6.13) agxm(t)-agx(t)

t
=~ (12 DLECE,R(6), | 6(6,5,%(8))d8)]

t
AN EICE RN RETCER NEITY

t
-f(t,x<t>,] g(t,s,%(s))ds) 1.
-1

On the other hand, by the inequalities (1.11) and (1.12), we have
t.
[ESMSIEICHION PCCER DO

;ﬁlo(m—l)/(m-i)

and by the inequalities (1. 5), (1. 7), (5. 3) and (6.11) we have

t
[ANEIR NON TR KON

t
~£(6,2(6), [ g(t,8,2(s)3a8) 1
;/2Zm—1SIIK6n§m—xnqéxs/iﬁil{Nim—xmuQ+ﬂxm-2uQ}
<K vZm-T{[M/(1-k) ]K7m‘3/2+xl/(m+1)m(m-1) }.

Then for the relation (6.13) we have
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d = d _ -1
IeFaterlomo ™) as o,
which implies the uniform convergence of the derivatives %Eim(t)

Cod
to EEX(t).

This completes the proof of Theorem 4.1.

7. Proof of Theorem 4.2

Let x=X(t) be an isolated solution of the boundary value
problem (0. 1) and (0. 2) lying in D for any t€J. There exists a
positive constant § satisfying (5. 1). We choose an arbitrary
constant € satisfying 0<e<6. Then there exists a number m, such
that for any m;m0

(7. 1) ol(m-1)=1/m<e.

Suppose that for any m=>=m0 thereare two Chebyshev
approximations
=x =x"!
X xm(t) and x xm(t)
satisfying

(7. 2) xRl ze and ||x!-Rl €.

We denote that
U€={x|nx—§(t)n;e for some t&€J}CUCD.

Then it follows that for any m>m im(t) and ié(t) belong to the

0
domain Ue for any t€J. Let us put

y(£)=X_(£)-X1(t).
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By the definition of Chehyshev-approximations .we:have

N

(7. 3) L Lyy(t;)=0

i
and

t
(7. 4) %gy(t)=Pm_l[f(t,§m(t),I_lg(t,s,im(s))ds)

't
-f(t,ié(t),[ 1g(t,s,i$(s))ds)].

We rewrite the above equations (7. 4) in the form

t
(1.5 Seys)=e(esn)y o)+ ¥(b,830)3(2)as (o),
where
t
h(8)=-(T-P,_)[eC5:0)y(6)+[ ¥(8,558)y(s)as]
-1
1 -0 P
+By g (L8(s5T0) -0 (652 Iy (0)
t 8
+J [o(t,53%0)-¥(t,5;58) Iy (s)ds}ae,
-1
and

iz(t)=§$(t)+e[im(t)—ié(t)].

Noting that ig(t)&ue for any t€J and 6€[0,1], we obtain, by the

same:- ‘argument as that used in proceeding from (5.16) to (5.17),

(7. 6) uan;pl<m-1>x8nyuQ+x4uig-xucnynQ;<x8+Ku)euynQ

from (7. 1) and (7. 2).
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On the other hand, applying Lemma 2.3 to the boundary value
problem (7. 5) and (7. 3), we obtain
. 1
y(6)=]" R(s,a)m(s)as,

-1
where ﬁ(t,s) is the Green function with respect to the matrices
?(t;%), ¥(t,s;R) and Li(i=0,1,--~~-,N). Then it follows from
(7. 6) that

R I < (Ko +K, ORI -ellyl
(7. 7 HYHQ;| Q h{Q; 8 u) HQE ylg-

Since € 1s arbitrary, the above inequality (7. 7) implies that
ivllg=0.,
that 1is
y(t)=0 for any tedJ
by the Parseval's equality for the finite Chebyshev polynomial
series y(t).
This proves the uniqueness of Chebyshev approximations and

hence completes the proof of Theorem 4.2.

8. Proof of Theorem 4.3
For the given approximate solution x=x(t) of the boundary

value problem (0. 1) and (0. 2) we put
. t
(8. 1) E(e)=r(s,8(1), [ a(t,5,%(e))as)va(o)

and
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N
(8. 2) - L,Xx(t,)=2".
120 1

Introducing the matrices A(t) and B(t,s), we rewrite the equations

(8 .1) in the form
d - - t - -
(8..3) a-gx(t)=A(t)x(t)+J B(t,s)x(s)ds+h(t;X)+q(t).
: -1
Here we denote that

t
h(t;x)=f(t,x(t),J g(t,s,x(s))ds)
-1

t
—A(t)x(t)—[ B(t,s)x(s)ds
-1

for any x=x(t)€C(J3;D). Applying Lemma 2.3 to the boundary value
problem (8. 3) and (8. 2), we have

A 1
(8. 4) J'c(t)=R(t,-1)G'12,'+J’ H(t,s)[h(s;%)+q(s)lds,
-1
where H(t,s) 1s the Green function with respect to the matrices
A(t), B(t,s) and Li(i=0,l,-°°'-,N).
To seek an exact solution of the system (0. 1) satisfying

the boundary condition (0. 2), we consider the iterative process

1
xn+1(t)=R(t,-l)G-12+I_1H(t,s)h(s;xn)ds

(8.
5) (n=0,l,'°‘°')
xo(t)=i(t).
For the iterative process (8. 5) we shall prove that 1t can be

continued infinitely in the space C(J;D) and that
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(8. 6)

and

(8. 7)

n
% e =2pll 2 lxy =0l

l‘xn+1-x0 “C;‘S s

for n=0,1,*++++, In fact, for n=0 the inequality (8. 6) is evident.

Since

1 .
xl(t)-xo(t)=R(t,-l)G_l(2-2')-I H(E,0)a(s)ds,

then by the assumptions of the theorem we obtailn

IIx,-xgllosMye+M, v,y

which implies by the condition (5) in (4. 4)

lxq —x ol g2 (1K) 6<8.

This proves (8. 7) for n=0. To prove our statement by induction,

let us suppose that the iterative process (8. 5) has been

continued up to n-1 and we have obtained (8. 6) and (8. T7) up to

n-1. Then by the inequality (8. 7) for n-1 we can make xn+l(t)

and from (8. 5) we have

(8. 8)

where

1
xn+1(t)-xn(t)=1_1H(t,s)[h(s;xn)—h(s;xn_l)]ds,

h(tsx )-h(tsx _,)

t
=f(t,xn(t),J g(t,s,xn(s))ds)
-1

t
_f(t,xn_l(t),I_lg(t,s,xn_l(s))QS)

t
'-A(t)[xn(t)—xn_l(t)]—I_]B(t,s)[xn(s)—Xn_l(s)]ds.
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Moreover, by a mean value theorem we obtain

h(t;x )-h(t;x _4)

1 t
=JO{¢(t;xg)[xn(t)-xn_l(t)]+I_1W(t,s;xg)[xn(s)—xn_l(s)ds}de

t
-A(t)[xn(t)-xn_l(t)]—I_lB(t,S)[xn(S)-xn_l(s)]dS,

where
e - . 3
xo(8)=x__,(£)+6[x_(t)-x _;(t)I€C(I;D).
It follows that

In(tsx )-n(tsx, )

1
0
.ﬁfoll@(t;xn)-A<t)\lllxn<t>-xn_1<t)llae

-1

Hence for the relation (8. 8) we have
“xn_xn-IHC;“H“Cuh(t;xn)-h(t;xn-l)uc

;MI(K/2M1+2K/MM1)"xn-xn_ﬂlC=K"xn—xn_inc

by the assumption (3) and (4) in (4. 4) of the theorem.

implies (8. 6) by the assumption of the induction and

n-1

(8. 9) “xn+l-x0NC;(Kn+K +~----+K+1)"x1-x

0“C
;(M25+er)/(1—n)é5§

This completes the induction and hence we see that the

process (8. 5) can be continued infinitely and satisfies

inequalities (8. 6) and (8. 7) for every n.
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By the inequalities (8. 6) and (8. 7) we see that the sequence
{x_(£)}CC(J;D) obtained by the iterative process (8. 5) converges
uniformly to a function R(t)e€C(J;D). It readily follows from (8. 9)
and (8. 5) that

I 2-xll < (M e+M;r)/ (1-Kk)<8

and
-1 (L
(8.10)  R(t)=R(t,-1)G z+[ H(t,s)h(s;R)ds.
-1

The equation (8.10) implies by Lemma 2.3 that
y .

L

L.%(t,)=4
and
t

%Ex(t)=A(t)2(t)+I B(t,s)R(s)ds+h(t;8)
-1

t
=f(t,2<t>,[ 8(5,8,2())ds).

Therefore the function %(t) is a solution of the boundary value
problem (0. 1) and (0. 2) belonging to the space C(J;U).

In order to prove the uniqueness of the solution of our
boundary value problem, we consider another solution x=R%'(t) of
the problem (0. 1) and (0. 2) belonging to the space C(J;U). Then
“ N
(8.11) iEOLix'(ti)q

and
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t
(8.12) %ﬁ'(thf(t,ﬁ'(t),[ g(t,s,8' (s))ds)
' -1
t
=A(t)2'(t)+[ B(t,s)%' (s)ds+h(t;R').
-1
Equivalently the relations (8.11) and (8.12) imply that
. 1
(8.13) ﬁ'(t)=R(t,-1)G'12+I H(t,s)h(s;R')ds.
: ‘ -1
Subtracting (8.13) from (8.10), we obtain
"x'x'ncif“x'xduc,
which implies

" x-x' uC=0 .

This proves the uniqueness of the solution of the problem (0. 1)
and (0. 2) 1lying in U for any teJ.
In order to prove the isolatedness of the solution x=2(t),

i1t 1s enough to see that the matrix

R(t
Ly

~
G=

i

"l)

e~

0 i

is nonsingular, where'ﬁ(t,s) is the resolvent_matrix wlth respect
to the matrices ¢(t;®) and ¥(t,s;®). Suppose that @ is singular.
Then there exists a nontrivial vector c¢ such that

/Gc=0.
For such ¢ let us put

y(t)=R(t,-1)c.

Then y=y(t) is a nontrivial solution of the boundary value problem
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of the form

N
(8.14) )
i=

N

Liy(t1)= LiR(ti,-l)c=Gc=0

)
0 1=0

and

t
(8.15)  py(6)=0(6;)y(E)+] ¥(t,558)y(s)as
-1
t
-A(©)y(e)+] B(8,0)y(a)as

€
+[¢<t;x>-A(t>1y<t)+[ [¥(t,s;3%)-B(t,s)ly(s)ds.
-1
Applying Lemma 2.3 to the problem (8.14) and (8.15), we obtain

1
y(t>=j (HC5,9)L0(s30)-A(s) Iy (s)

s
+[ [¥Y(s,u3R)-B(s,u)]y(u)dulds.
-1

Then, by the assumption. (3) and (4) in (4. U4), we have
19l g Bl o (k/2my +2/M )|yl o=kl ¥ .5
Whidh implies that
- ylig=0-
This 1s contradiction. Hence the matrix‘@ is nonsingular, that

is, the solution x=8%(t) 1is i1solated. This completes the proof of

Theorem 4.3.
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The Buckling of Plates by the Mixed Finite Element Method
By

%
Kazuo ISHIHARA

1. Introduction

We shall consider the mixed finite element approximation applied

to the buckling problem of the thin plate with the clamped boundary

condition:
% a2u
AAu + A T,y 4 = = () in @
=1 1J 9x,9x ' ’
(1) i,j=1 1i°7]
u = 9u/9v = 0 on 3Q.

Here § 1s a bounded convex domain in the‘xlxz—plane with boundary
3Q consisting of a finite number of smooth arcs, A 1is the Laplace
operator, 9/9v 1s the outward normal derivative along 92, and Tij
(1,3=1,2) are given smooth functions such that

T12 © To1»

- 9T5q . 9T55 _ o
’ Bxl 8x2 *

The buckling of the plate 1s possible only for certain definite values

BTll 3112

+
axl 3x2

of A. The minimum of these values determines the critical buckling
load. The associated buckling configuration is the function u corres-

ponding to the buckling load A. A simple case i1s buckling under pure

* .
Department of Mathematics, Facullity of Science, Ehime University,
Matsuyama 790, Japan.
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compression
AAU + 2pu = 0.
The aim of this paper is to give the rates of convergence for
the finite element approximate solutions of the eigenvalues and the
eigenfunctions, by applying the mixed method with piecewise linear

polynomials proposed by Miyoshi [5],[6].

2. Notations and weak formulation

Let L?(Q) be the real space of square integrable functions on
Q, whose inner product and norm are denoted by ( , ) and || .||, re-
spectively. Let H™(Q) be the real m-th order Sobolev space(m=1,2,

3,+++) provided with the norm

Bl = C L I

|ojsm
Here a=(B,y) 1is a two-component index with non-negative integers,

o a
|a]= 8 + v and D = BE/L//;xg Bxg.

The spaces Hé(n) and HS(Q) are given by

{r; re v (), £ =0 on aQ},

L
HO(Q)

{f; f€H?(Q), f = 3f/dv = 0 on 3Q}.

2
HO(Q)

In order to deal with the buckling problem (1) in a weak form,

let us define bilinear forms < , > and [ , ] by

cu,v> = ¥ (D%u,D%),
Jof =2
2
(u,v] = ) (Tijau/axi,av/axj).

1,j=1

14



We assume that

[u,ulzo0 for each uGHl(Q),
and that the norm ﬂl-m induced by [ , ] 4is equivalent to the norm
u-ﬂl in Hé(ﬂ). The standard weak form of (1) consists of finding a
real eigenvalue A and a non-zero eigenfunction uéHg(Q‘) defined by

<u,6> = Alu,é) for each ¢€-Hc2)(9).

It is well known that all the eigenvalues {Ai} are arranged as

O<A1£A2$—O"(“'

The multiplicity of each eigenvalue 1s always finite. The correspond-
ing eigenfunctions are denoted by ‘{ui} with the normalization con-
dition
[ui,uJ] = 613
where dij 1s Kronecker’s delta. It is also well known that the eigen-
b 2 by .

functions {ui}i=1 belong to the space HO(Q)(\H () when 23 is
sufficiently smooth and that {ui};:1 belong to Hg(ﬂ)(\H3(Q) when
@ 1s a convex polygon. From the Rayleigh principle the eigenvalues

are characterized by

<u,u>
Ai = min i=1,2, s
LleHg(Q) [u,ul
u¥0
[u,uJ]=0
J=1l,+..,1-1

and the minimum is attained by uy .
In order to construct the mixed finite element scheme, we intro-
. 1 1
duce another formulation: Find (u’Ull’Ulz’U21’U22)eHO(mXH () X

HY (2) X HL(2) X HL(2) (U ,=U such that

21)
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] [(au/axy,30, /3%, D+ (Uy5,0,00] =

for each ¢,.¢€ HL () (¢ 5=057) >
(2) 13 12°%21

2 2
(3Uy 3/3x 3¢/9x,) - A( ) T,,U.,.,0) =0
5o g 1,j=1 ¥
for each ¢e H%(Q).
We assume that - uéHg(Q)f\HE](Q)- The solution (u,UllgulgsUgl’Ugg) of

(2) 1is related by
5
Ujy = 0 wloxyax, ,  1€1,5£2.

We define a space V by

V= {(u,U,,,U U22)éHé(Q)XHl(Q)XH1(Q) X H1(Q) X HI(Q);

11°Y12°U21>

U, =0

12 “21° ii,:j[(au/axi,ad)ij/ax;]) + (Uij’q)i,j)] = 0

for each ¢iJeHl(Q) )1,

(615¢5;
and a bilinear form E(U,W) by

E(U,W) = (Upy,Wpp) + (UppuWyp) + (UpgsWpy) + (UppsWpp)

= = m 1
where U (Ull’ 12,U21,U22), W = (wll, 105Woq W 5p). The elgenvalues
are characterized by

E(U,U)
= min = o o o
M OT tu,u) eV R 121,250,
[u u ] 0
J=1, -,i 1

i, 1 1 1 1
and the minimum is attained by (ui,U )—(ui,Ull,Ul2,U21,U22)

3. Convergence of the finite element scheme

For simplicity, we assume that the domain § 1s a convex polygon.

Then the eigenfunction u belongs to Hg(Q)I\Hj(Q). The domain 1is
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decomposed into disjoint triangular elements in the usual manner. Let

P,,1€i&n (or P,,n+l1 £€1i<£n+J) Dbe the nodal points of the triangula-

i? i
tion Th which belong to g (or 23Q). Here h 1is the largest side
length of all the triangular elements. It 1s also assumed that the
triangulation Th is uniform in the interior of @ in the sense of
Miyoshi ([5],[6]). Let {$i}(i=l,2,}~~,n+J) be the piecewlse linear

functions such that

Qi(Pj) = 8,45 1<1,5<n+d.

Let Y' be the subspace of Hl(n) spanned by {@1,-.. } and Yg

A

2P+
be the subspace of Hé(n) spanned by'{$],-'-,$h},
AADL A A
AsusUyq5U755U075

A
12=U21) of the consistent mass scheme for the

We now define the mixed finite element solution (

ey 9§

L]

val A h @

problem (2) by

2
z=l[(aﬁ/3x1’3$13/3x3) + (ﬁij’$ij)] =0

1,3
’ for each @iiéYh (Q]?-_-’(le)’
(3) 5 ) '
A A n o A,
T (8U,,/0x,,9¢/9x,) - X( g T,,U,:,9) =0
1,5=1 17 7J° 1 1,5=1 1717
for each QGYE.
We define a space Vh by
A A A A P A
V= (8,00,,0,,,0,,,0,,) € vh xR 2 ¥R x vxy? T =T,

ﬁZJ[(aG/axi,aﬁ?iJ/axJ) + (ﬁij,{ﬁij)] =

for each _$ijé-Yh ($125$21)}.

AN A A A h A h
It is also assumed that for '(u’Ull’Ul2’U21’U22)€'V and WéYO,

2 A |
(4) ( T,,0,,,M = -[4,%7.
AT

17



By (3) and (4), we can obtain a set of the matrix equations

Kx + My = 0, Xy +7%Gx =o0,
where K and K are elastic stiffness matrices, G 1s the geometric
stiffness matrix, and M 1s the consistent mass matrix. The eigen-

values {Qi}iﬁl of (3) are arranged as

A
0<% =%,& .- 5% .
The corresponding eigenfunctions (Gi,U )= (ﬁ Ull’Ui2’G%l’ 22) (1=1,2,
«,n1) can be normalized by
(6,,8,1 = 6,5,
Then the eilgenvalues are characterized by

[, ,u;1=0.

A A
A E(U,U)
A, = min , ————ms— , 1=1,2, ,n,
1 @.0Hev™ oy?
Aufo
[u,uj]=0
J:l,-oo’i—l

A
and the minimum is attained by (ui,U ).

Consider the static plate bending problem with the clamped boundary

condition:

MW = f in @,

(5)

W 8@/§v= 0 o aN.
Here f 1s a given function belonging to L2(Q). Miyoshi proved the

following proposition ([5],[61]).

N A A
Proposition 1. Let w be the solution of (5) and (G,wll,wlz,w21,

h h h h h
f\\l22)eY0XY XY XY XY (w12 21) be the finite element solution

defined by
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" | iégl[(aﬁ/axi,a{pfm/axj) + (ﬁi,j\,?ij')i =AO )
(6) . ) for each A?ijé Yo (91295175
I (QWy/0%,,30/9%y) + (£,9) = 0
u - e for each ﬁ}éYh.
Then

v - %, =clr] nt/2

where C 1is a constant independent of h.

We can now obtain the following results using Proposition 1. The

proof will be published elsewhere.

Theorem 1. Let 'Qi' be the approximate eigenvalue of Xi. Then

for sufficiently small h, there exlists a constant C] which is in-

dependent of h such that

N 1/2
Ay - Ay | L cptlel

i

Theorem 2. Let )‘1 be of multiplicity p+l (p=0, }‘i—1< )\i=---=

li+p<:xi+p+1)’ and ui’...’91+p be the corresponding eigenfunctions.

Let Gk be the approximate eigenfunctidn corresponding to ‘Q%(k=l,2,
.,n). Then for sufficiently small 'h, there exists a constant C2
which is independent of h such that
dist;{uJ s span[ﬁi, o "ﬁi-i-p]} < 02h1/2, J=i,.-+,1i+p,

where

dist{u, B} = inf [ju - bll.
beB

As a corollary to Theorem 2, we have

9



Corollary 1. If Xi is a simple eigenvalue, then for sufficiently

small h there exists a constant 03 which is independent of h such

that

A 1/2
l"ui - ui"|5503h .

Remark. Furthermore, we can propose the generalized mixed mass
scheme with a parameter 6, 0<6<£L1([2])

Kx + {6M + (1-8)M;}y = 0, Ky + %Gx = 0,

where M1 is the diagonal lumped mass matrix. The error estimate of

the above scheme 1s similar to the one of the consistent mass scheme.

4. Numerical example

To show the validity of the theoretical results, we deal with the
following example of the square plate, which 1s the same as the one

given by Weinstein and Stenger ([7], pl93).

Example. §: -m/2< %, X5 < n/2,
AAu + AAu = 0 in @,
u = 3u/dv = 0 on 3Q.

Although the exact first eigenvaiue (buckling load) A is not known,

1
they obtained the inequality

5.30362 < A, £ 5.31173.
We divide §© into nXn uniform mesh as shown in Figure 1. Our

choices for the parameter 6 are 0, 0.5, 1. Table 1 shows the
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numerical results, from which we can see that the approximate first
eigenvalues converge as h tends to zero. All numerical computations
were performed on the FACOM 230-28 computer at Ehime University, and

the FACOM 230-75 computer at Kyushu University.

Figure 1. Mesh pattern (3X3)

Table 1. The results for Example

mesh(nx n) TX7 8§ X8 9X 9 10% 10
" h J2n/6 /7 (Zn/8 {31/9
0 4 ,82007 4,94137 5.02223 5.07883
0 0.5 5.45497 5.42827 5.40559 5.38766
1 6.31138 6.03642 5.86073 5.T4163
Acknowledgements

The author would like to express his thanks to Professor H, Fujita
of the University of Tokyo and Dr. M. Tabata of Kyoto University

for their advices.

81



[1]

(2]

£31]

(4]

(5]

(6]

(71

References

Brezzi, F. : On the existence, uniqueness and approximation of
saddle-point problem arising from Lagrangian multipliers. R. A.
I. R. 0., 8-R2 (1974) 129-151.

Ishihara, K. : Convergence of the finite <lement method applied
to the eigenvalue problem Au+Au=0. Publ. RIMS, Kyoto Univ., 13
(1977) 47-60.

Kikuchi, F. : Convergence of the ACM finite element scheme for
plate bending problems. Publ. RIMS, Kyoto Univ., 11 (1975) 247-
265.

Kikuchi, F. : On a finite element scheme based on the discrete
Kirchhoff assumption. Numer. Math., 24 (1975) 211-231.

Miyoshi, T. : A finite element method for the solutions of fourth
order partial differential equations. Kumamoto J. Sci. (Math.),

9 (1972) 87-116.

Miyoshi, T. : A mixed finite element method for the solution of
the von Karman equations. Numer. Math., 26 (1976) 255-269.
Weinstein, A. and Stenger, W. : Methods of intermediate problems
for eigenvalue problems, theory and ramifications. Academic Press

1972.

82



	mnm_05_a.pdf
	mnm_05_001
	mnm_05_033
	mnm_05_073

