




































































































































as m-+oo, 

which implies the uniform convergence of the derivatives 

d to dtx(t). 

This completes the proof of Theorem 4.1. 

7. Proof of Theorem 4.2 

Let x=i(t) be an isolated solution of the boundary value 

problem (0. 1) and (0. 2) lying in D for any tEJ. There exists a 

positive constant 0 satisfying (5. 1). We choose an arbitrary 

constant E satisfying Then there exists a number mO suel! 

that for any m>mO 

(7. 1) °l(m-l)=l/m<E. 

Suppose that for any there are two Chebyshev 

approximations 

satisfying 

(.7. 2) 

We denote that 

for some tE:J}CU:::D. 

Then it follows that for any m>mo x (t) and x'(t) be:ong to the m m 
domain UE for any tEJ. Let us put 

y(t)=x (t)-x'(t). m m 
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By the definition 'of Chebyshev'lappro.~.1l'nati.ons· .:we.'_'.have 

and 

(7. 4) 

t 
-f(t,x~(t),I g(t,s,x~(S»ds)J. 

-1 

We rewrite the above equations (7. 4) in the form 

(7. 5) 

where 

and 

~ty(t)=~(t;~)y(t)+It ~(t,s;~)y(s)ds+h(t), 
-1 

h(t)=-(I-Pm_1)[~(t;~)y(t)+Jt ~(t,s;~)y(s)ds] 
-1 

Jt 6 
+ [~(t,s;x )-~(t,s;~)Jy(s)ds}d6, 

-1 m 

X6 (t)=Xm'(t)+6[X (t)-x'(t)]. m m m 

-6 Noting that xm(t)~Ue for any tEJ and 66[0,1), we obtain, by the 

same-argument as that used in proceeding from (5.16) to (5.17), 

(7. 6) 

from (7. 1) and (7. 2). 
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On the other hand, applying Lemma 2.3 to the bounda:ry value 

problem (7. 5) and (7. 3), we obtain 

Jl A 

y(t)= H(t,s~~(s)ds, 
-1 

"'-where H(t,s) is the Green function with :respect to the matrices 

~(t;f), ~(t,s;~~ and Li(i=O,l, ••••• ,N). Then it follows from 

(7. 6) that 

(7. 7) 

Since E is arbitrary, the above inequality (7. 7) implies that 

that is 

y(t)=o for any teJ 

by the Parseval's equality for the finite Chebyshev polynomial 

series yet). 

This proves the uniqueness of Chebyshev approximations and 

hence completes the proof of Theorem 4.2. 

8. Proof of Theorem 4.3 

For the given approximate solution x=x(t) of the boundary 

value problem (0. 1) and (0. 2) we put 

(8. 1) - Jt ~ t x (t ) = f (t , x (t ) , g ( t , s , X ( s ) ) ds ) +q '( t ) 
-1 

and 
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(8. 2) 

Introducing the matrices A(t) and B(t~s), we rewrite the equations 

(8 .1) in the form 

(8. ,3) ~tX(t)=A(t)X(t)+It B(t,s)x(s)ds+h(t;x)+q(t). 
-1 

Here we denote that 

h(t;X)=f(t,X(t),It g(t,s,x(s»ds) 
-1 

-A(t)X(t)-f t B(t,s)x(s)ds 
-1 

for any x=x(t)EC(J;D). Applying Lemma 2.3 to the boundary value 

problem (8. 3) and (8. 2), we have 

X(t)=R(t,-1)G-11 f +J l H(t,s)[h(s;x)+q(s)]ds, 
-1 

(8. 4) 

where H(t,s) is the Green function with respect to the matrices 

A(t), B(t,s) and Lt(i=O,l,.··.·,N). 

To seek an exact solution of the system (0. 1) satisfying 

the boundary condition (0. 2), we consider the iterative process 

1 II x +l(t)=R(t,-l)G- 1+ H(t,s)h(s;x )ds 
n -1 n 

(8. 5) (n=O,l,·····) 

For the iterative process (8. 5) we shall prove that it can be 

continued infinitely in the space C(J;D) and that 
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(8. 6) 

and 

(8. 7) 

for n=O,l,·····. In fact, for n=O the inequality (8. 6) isev1dent. 

Since 

Xl(t)-XO(t)=R(t,-l)G-l(t-t')-f l H(t,s)q(s)ds, 
-1 

then by the assumptions of the theorem we obtain 

\lxl-xOllc<M2€:+Mlr, 

which implies by the condition (5) in (4. 4) 

\~l-xO"C«l-K)B<B. 

This proves (8. 7) for n=O. To prove our statement by induction, 

let us suppose that the iterative process (8. 5) has been 

continued up to n-l and we have obtained (8. 6) and (8. 7) up to 

n-l. Then by the inequality (8. 7) for n-l we can make xn+l(t) 

and from (8. 5) we have 

(8. 8) 

where 

h(t·x )-h(t·x ) , n ' n-l 

-f(t,x l(t),J t g(t,s,x l(s»dS) n- n--1 

-A(t)[Xn(t)-Xn_l(t)]-f t B(t,s)[xn(s)-Xn_l(s)]ds. 
-1 
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Moreover, by a mean value theorem we obtain 

h(t;x )-h(t;x 1) n n-

II 8 It 8 = {~(t;x )[x (t)-x l(t)]+ ~(t,s;x )[x (s)-x 1(S)ds}d8 n n n- n n n-O -1 

It . 
-A(t)[x (t)-x l(t)]- B(t,s)[x (s)-x l(s)]ds, 

n n- -1 n n-

where 

x8 (t)=x 1(t)+8[X (t)-x l(t)]~C(J;D). n n- n n-

It follows that 

I\h(t;x )-h(t;x 1)11 n n-

It II 8 + 1I~(t,s;x )-B(t,s)llllx (s)-x 1(s)lld8dS. 
_IOn n n-

Hence for the relation (8. 8) we have 

II xn -xn_l Uc< IIH lIcllh (t; xn ) -h (t ; xn_l)\l C 

~Ml (K/2Ml +2K/4Ml ) IIxn -xn_lU C=K IIxn-xn_ll\ C 

by the assumption (3) and (4) in (4. 4) of the theorem. This 

implies (8. 6) by the assumption of the indu.c.tion and 

(8. 9) IIxn+l-XoUC~(Kn+Kn-l+ ••••• +K+l)lIxl-Xolic 

< (M2E+Ml r) / (l-K )~O. 

This completes the induction and hence we see that the iterative 

process (8. 5) can be continued infinitely and satisfies 

inequalities (8. 6) and (8. 7) for every n. 
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By the inequalities (8. 6) and (8. 7) we see that the sequence 

{Xn(t)}~C(J;D) obtained by the iterative process (8. 5) converges 

uniformly to a function i(t)EC(JjD). It readily follows from (8. 9) 

and (8. 5) that 

\\ i-x I\c~(M2E+Mlr) / (l-K )~o 

and 

i(t)=R(t,-l)G-l~+fl H(t,s)h(sji)ds. 
-1 

(8.10) 

The equation (8.10) implies by Lemma 2.3 that 

and 

~ti(t)=A(t)i(t)+ft B(t,s)i(s)ds+h(tji) 
-1 

=f(t,i(t),f t g(t,s,i(s»ds). 
-1 

Therefore the function i(t) is a solution of the boundary value 

problem (0. 1) and (0. 2) belonging to the space C(JjU). 

In order to prove the uniqueness of the solution of our 

boundary vR1ue problem, we consider another solution x=i'(t) of 

the problem (0. 1) and (0. 2) belonging to the space C(JjU). Then 

N 
(8.11) L L it(t )=~ 

i=O i i 

and 
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(8.12) ~t~'(t)=f(t,i'(t),Jt g(t,s,~'(s»ds) 
-1 

=A(t)~'(t)+Jt B(t,s)~'(s)ds+h(t;i'). 
-1 

Equivalently the relations (8.11) and (8.1~) imply that 

(8.13) ~'(t)=R(t,-l)G-l!+Jl H(t,s)h(s;i')ds. 
. -1 

Subtracting (8.13) from (8.10), we obtain 

IIx-x' Ilc~K\lX-X" l\c' 

which implh~s 

1\ x-x' Uc=O. 

This proves the uniqueness of the solution of the problem (0. 1) 

and (0. 2) lying in U for any tEJ. 

In order to prove the isolatedness of the solution x=i(t), 

it is enough to see that the matrix 

L'>. 
is nonsingular, where R(t,s) is the resolvent matrix with respect 

to the matrices ~(t;i) and ~(t,s;~). Suppose that ~ is singular. 

Then there exists a nontrivial vector c such that 
r:
Gc=O. 

For such c let us put 
"'-y(t)=R(t,-l)c. 

Then y=y(t) is a nontrivial solution of the boundary value problem 
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of the form 

C8.14) 

and 

(8.15) d ft dty(t)=~(t;~)yCt)+ ~(t,s;~)y(s)ds 
-1 

=A(t)y(t)+f t BCt,s)y(s)ds 
-1 

+[~(t;~)-A(t)]YCt)+Jt [~(t,s;~)-B(t,s)]y(s)ds. 
-1 

Applying Lemma 2.3 to the problem (8.14) and (8.15), we obtain 

y(t)=f1 H(t,s){[~(s;i)-A(s)]y(s) 
-1 

+Js [~(s,u;i)-BCs,u)]y(u)du}ds. 
-1 

Then, by the assumption", ('3) and (4) in (4. 4), we have 

"YUC~"HUC(K/2Ml+2K/Ml)~Y"C=K"Y"~, 

whicn implies that 

l\y\!c=O. 
D This is contradiction. Hence the matrix G is nonsingular, that 

ls, the solution x=i(t) is isolated. This completes the proof of 

Theorem 4.3. 
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The Buckling of Plates by the Mixed Finite Element Method 

By 

* Kazuo ISHIHARA 

1. Introduction 

We shall consider the mixed finite element approximation applied 

to the buckling problem of the thin plate with the clamped boundary 

condition: 

(1) 

2 a2u 
I::.l::.u + A L ,. ij = ° 

i,j=l axiax j 
in n, 

u = au/av = ° on an. 

Here n is a bounded convex domain in the x l x 2-plane with boundary 

an consisting of a finite number of smooth arcs, I::. is the Laplace 

operator,a/av is the outward normal derivative along an, and Tij 

(i,j=1,2) are given smooth functions such that 

+ + 

The buckling of the plate is possible only for certain definite values 

of A. The minimum of these values determines the critical buckling 

load. The associated buckling configuration is the function u corres-

ponding to the buckling load A. A simple case is buckling under pure 

* Department of Mathematics, Faculity of Science, Ehime University, 
Matsuyama 790, Japan. 
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compression 

6.6.U + A6.U = O. 

The aim of this paper is to give the rates of convergence for 

the finite element approximate solutions of the eigenvalues and the 

eigenfunctions, by applying the mixed method with piecewise linear 

polynomials proposed by Miyoshi [5J,[6J. 

2. Notations and weak formulation 

Let L?(n) be the real space of square integrable functions on 

n, whose inner product and norm are denoted by ( , ) and U .11, re

spectively. Let Hm(n) be the real m-th order Sobolev space(m=1,2, 

3,···) provided with the' norm 

2 1/2 
luflm = ( L I/Daull) 

lal~m 

Here a=(S,y) is a two-component index with non-negative integers, 

a 
a~x~ lal= S + Y and D = dx~. 

H1Un 
'1 

'llhe spac es and H'-(n) are given by 
0 0 

Hi(n) = {f; f~ Hl (n) , f = 0 on dn}, 0 

H~(n) = {f; fEo H2 (n), f = df/dv = 0 on ()n}. 

Tn orner to deal with the buckling problem (1) in a weak form, 

let us define bilinear forms < ,> and [, J by 

~u,v> = L (Dau,Dav)} 
lal =2 

2 
[u,yJ = L (T ij ()u/()x i ,3v/()xj ). 

i ,j=l 
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We assume that 

[u,uJ:2=O 

and that the norm 1/1'111 induced by [,] is equivalent to the norm 

8'll l in H~(g). The standard weak form of (1) consists of finding a 

real eigenvalue A and a non-zero eigenfunction u E: H~ (n) defined by 

<u,<P> = A[u,<PJ for each <pE-H6(n). 

It is well known tha~ all the eigenvalues {Ai} are arranged as 

0'< Al ~ A2~ ••• <00. 

The multiplicity of each eigenvalue is always finite. The correspond

ing eigenfunctions are denoted by {ui } with the normalization con

dition 

where 0ij is Kronecker's delta. It is also well known that the eigen-
00 

functions {ui}i=l belong to the space 

sufficiently smooth and that 

H~(n)(\H4(n) when an 

belong to H~(n)nH3(n) 

is 

when 

n 1s a convex polygon! From the Rayleigh principle the eigenvalues 

are characterized by 

<u,u> 
Ai = min i=1,2,···, 

2 [u,u] 
u Eo HO (n) 

u:\:O 
[u,uj]=O 

j=l, ... ,i-l 

and the minimum is attained by u i • 

In order to construct the mixed finite element scheme, we intro-

duce another formulation: Find 

such that 
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2 
L [(au/axi,a~ij/axj) + (Uij'~i~)J = 0 

i,j=l .J 

for each ~ijE H1 (n) (~12=~21)' 
2 2 

(2) 

L (aUij/aXj,a~/axi) - A( L TijUij'~) = 0 
i,j=l .. i,j=l 

1 for each ~E- Ho(n). 

We assume that· u~H~(n)"H3(s'n. The solution (u,Ull,U12'U21,U22) of 

(2) is related by 

1~i,j:!:2. 

We define a space V by 

V = {(u,U11'U12'U21,U22)~H~(n)XH1(n)XH1(n) XH1 (n)XH1 (n); 

U12=U21 , i~j[(au/aXi,a~ij/aXj) + (Uij'~ij)J = 0 

1 
for each ~ij E-H (n) (~12=~21)}' 

and a bilinear form E(U,W) by 

E(U,W) = (U11 ,W11 ) + (U12 ,W12 ) + (U21 ,W21 ) + (U22 ,W22 ) 

where U = (U11,U12,U21,U22)' W ~ (W11,W12,W21,W2?)' The eigenvalues 

are characterized by 

A = i 
min 

{u,U}4:V 
u+O 

[u,u.jJ=O 
j=l,··,i-1 

E(U,U) 

III ull' 2 i=1,2, ... , 

3. Convergence of the finite element scheme 

For simplicity, we assume that the domain n is a convex polygon. 

Then the eigenfunction u belongs to ~~(n)('\H3(n). The domain is' 
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decomposed into disjoint triangular elements in the usual manner. Let 

Pi,l~i~n (or Pi,n+l~i~n+J) be the nodal points of the triangula

tion Th which belong to n (or an). Here h is the largest side 

length of all the triangular elements. It is also assume~ that the 

triangulation Th is uniform in the interior of n in the sense of 

Miyoshi ([5J,[6J). Let {~i}(i=1,2, ••• ,n+J) be the piecewise linear 

functions such that 

A 
<l>i(P,i) = 0i,1' 1 ~ i,j ~ n+J . 

Let ~h be the subspace of Hl(n) r,. r..} spanned by {<I>l,···,<I>n+J and 

be the subspace of H~(n) 
/,,,,1' I' A 

We now define the mixed finite element solution CA,u,Ull,U12,U21' 

'" '" h '" h'" 1\ U22 )(u ~ YO' Uij E- Y , U12=U21 ) of the consistent mass scheme for the 

problem (2) by 

We define a space vh by 
h ;to A A /\ /\ h h h h h 

V = {(u,Ull'U12'U21'U22) ,"Yo xy J( Y )( Y )( Y . 
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By (3) and (4), we can obtain a set of the matrix equations 

Kx '+ My: 0, 
tv ~ 
Ky + XGx = 0, 

where K and r are elastic stiffness matrices, G is the geometric 

stiffness matrix, and M is the consistent mass matrix. The eigeh-

values {1 } n of (3) are arranged a8 
. i i=l 

O<~1~1?~ ... ~1n· 
~ ~i ~ Ai Ai Ai Ai 

The corresponding eigenfunctions (ui,U )=(ui,Ull'U12'U21,U22) (i=1,2, 

... ,n) can be normalized by 

" 1\ " [ui,ujJ = <5 ij , [ui,uiJ~O. 

Then the eigenvalues are characterized by 

l' i = "min h 
(~,U)E- V 

u:\=O 
[G,o.jJ=O 

j=l,···,i-l 

, 

" "i and the minimum is attained by (ui,U ). 

i=1,2,···,n, 

Consider the static plate bending problem with the clamped boundary 

condition: 

66w = l' in St, 

w = dWjdV = 0 011 aQ. 

Here f is a given function belonging to 1 2 (Q). Miyoshi proved the 

following proposition ([5J,[6J). 

Proposition 1. Let w A /\ '" t\ 
be the solution of (5) and (w,Wll,W12,W2l' 

W ) • yh X. yh X. yh X yh X yl1 
22 0 

" A (W12=W21 ) be the finite element solution 

defined by 
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= 0 

(6) 
2 A A A l (aWij/aXj,a$/axi ) + (f,$) = 0 

i,j=l 
for each ~ Eo yh . 

Then 

rl w - ~lIl ~ C UfU h l / 2 , 

where C is a constant independent of h. 

We can now obtain the following results using Proposition 1. The 

proof will be published elsewhere. 

Theorem 1. Let 1 i · be the approximate eigenvalue of Ai. Then 

for sufficiently small h, there exists a constant C1 which is in

dependent of h such that 

I Ai - ~i I ~ Cl h l / 2 . 

Theorem 2. Let Ai be of multiplicity p+l (p%O, Ai _l < Ai ="'= 

Ai+p<Ai+p+l)' and ui,···,ui+p'be the corresponding eigenfunctions. 
A' A 

Let uk be the approximate eigenfunction corresponding to Ak (k=1,2, 

... ,n). Then fur sufficiently small h, there exists a constant C2 

which is independent of h such that 

where 

dist{u, B} = inf Illu - bOl. 
bEB 

As a corollary to Theorem 2, we have 
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Corollary 1. If Ai is a simple eigenvalue, then for sufficiently 

small h there exists a c~nstant C3 which is independent of h such 

tbat 

Remark. Furthermore, we can propose the generalized mixed mass 

scheme with a parameter a, 0~a~1([2J) 

Kx + {aM + (l-a)Ml}y = 0, 
"'" ,.., 
Ky + AGx = 0, 

where Ml is the diagonal lumped mass matrix. The error estimate of 

the above scheme is similar to the one of the consistent mass scheme. 

4. Numerical example 

To show the validity of the theoretical results, we deal with the 

following example of the square plate, which is the same as the one 

given by Weinstein and Stenger ([7J, p193). 

Example .. H: 

tllm + >'tlu = 0 in Q, 

u = aU/dv _. 0 on an. 

Although the exact first eigenva:ue (buckling ioad) Al is not known, 

they obtained the inequality 

5.30362:S Al~ 5.31173. 

We divide n into n X n uniform mesh as shown in Figure 1. Our 

choices for the parameter e are 0, 0.5, 1. Table 1 shows the 
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numerical results, from which we can see that the approximate first 

eigenvalues converge as h tends to zero. All numerical computations 

were performed on the FACOM 230-28 computer at Ehime University, and 

the FACOM 230-75 comp~ter at Kyushu University. 

Figure 1. Mesh pattern (3 X 3) 

Table 1. The results for Example 

mesh(n X n) 7x7 8X8 9X 9 10)< 10 

h J2rr/6 [2rr/7 [2rr/8 [27T/9 

0 4.82007 4.94137 5.02223 5.07883 
e 0.5 5.45497 5.42827 5.40559 5.38766 

1 6.31138 6.03642 5.86073 5.74163 
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