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Equivalence Class and Invariant Figures 

of·Rational Iterations 

with special reference to 

the Global Convergence Properties of Newton's Method 

Kohei Sato 

A B S T R ACT 

Basic concepts and theorems about global convergence features 

of rational iterations with one complex variable are summarized 

here. The concept of equivalence class of a rational function, 

which is implicit in the works of G. Julia and oth~rs, is 

reformulated in view of practical application. Properties of 

the "domain of di·rect convergence" presented by Julia are 

derived more systematically from those of "invariant figures" 

for a given rational iteration. Applying them to Newton's 

method for solving polynomial equations, we have made a scheme 

of sk~tching the shapes of its convergence regions mechanically. 

1. Introduction 

The iteration by a rational function with one complex 

variable is one of the pro~esses most frequently appearing 

in numerical analysis. The essential part of its global 

convergence features was studied by Gaston Julia in his 

comprehensive work [4J. His work, being concerned mainly 

about the topological features of convergence areas, also 

contains many hints on the numerical methods for determin~ng 
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their boundaries. On the other hand, in the field of numerical 

analysis, we hardly find general treatments on global behavior 

of this kind of iteration. 

The aim of this paper is to sum up such global properties 

of rational iterations that are considered to be useful in 

numerical analysis and to establish a practical method for 

determining the shape of its convergence areas. Some of 

the concepts and theorems presented here, including the 

concept of equivalence class and theorems about Newton's 

iteration, are either implicit in Juia's work [4J or 

readily derivable therefrom. However, they are reformulated 

in view of numerical analysis and their implications in the 

practically significant situations of applied mathematics 

are clarified. In particular, the idea of invariant figures 

will turn out to be useful for investigating the properties 

of convergence areas. 

1.1. Definitions. By C we mean the closed complex 

plane or the Riemann sphere. A rational function ~ is 

considered as a mapping from C onto C. The iteration 

by ~,which will be denoted by It[~J, is a sequence of 

mappings: It[~J - {~9, ~1 , ~2 , ... } where ~o(z) - Z, 

~l =~, ~2 = ~~, ~3 = ~~~ etc. The set {w I ~n(W) = z} 

is represented by ~_n(z). 

When two subsets A, B of C are related to each other 

by the relation ~n(A) = B (n ~ 1), we call A an antecedent 

of B and B a consequent of A in It[~J. Especially, if 

(0 < m < n), A is called an n-th ante-
= 

cedent of B and B the n-th cons~quent of A. 
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When teA) = A. we call A an invariant figure or si~ply 

a fig~ of It[.]. C, 0, a set of fixed points of ., etc. 

are examples of the simplest (invariant) figures of It[.]. 

The set {z I lim ·n(z) = x} is denoted by U.(x) (if 
n07()() 

• or x is evident from the context, we shall denote it by 

U(x) or simply by U). It is well known that, i ~o U.(X) ~ 0, 

x 1s a fixed point of •. The interior, or the open kernpl, 

of U(x) is denoted by U(x), each of whose connected 

component is called a convergence region (or a domain of con-

vergence) of It[.] toward x. U(x) and U(x) are other 

examples of figures of It[.], while a convergence region is 

not always a figure of It[.]. 

1.2. Equivalence of rational functions. If • and ~ 

are rational functions and there exists a linear fractional 

funct10n T such that T.T_l = ~ ,~ is said to be equl~~lent 

to • and is denoted as • Q! ~ or • ~ ~. The following 

propositions follow readily from this definition. 

(1 ) rfhe relation Q! is an equivalence relation. 

(2) If • Q! ~, then deg • = deg ~ . 

(3) If • T 
~ and A is an n-th antecedent of B in It[.], ----to-

then T(A) is an n-th antecedent of T(B) 1n It[~J" 

( 4 ) If • 2-.. ~ and A is an invariant figure of TtC·]s; 

then T(A) is an invariant figure of It [~J . 

(5 ) If or .-- ~, then T[U.(x)] = U~[T(x)J and T[U.(x)] 

= U ~ [ 'I' ( x ) J . 

1.3. Classification of fixed points. Let x be a fixed 

point of •. Then x is either a point of U.(x) or a 

point of U.(x) - U.(x). In the former case we call x 

a stable fixed point and in the latter case an unstable fixed 
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point. Now we define the "dissipation factor" of the fixed 

point x by 

(1.1 ) { 
~'(x) 

p(x) = 
, l/~'(x) 

if x ri 00 , 

if x = 00 

which is invariant under an equivalence transformation, i.e., 

then p~(x) = pv[T(x)J. It can easily be 

verified that x is stable if O.~ Ip(x)1 < 1 and unstable 

if 1 ~ Ip(x)1 < 00. Furthermore, it is known (see, e.g., [lJ, 

[4], [5 J) that 

(1 ) the convergence of It[~ J is of the second or higher 

order in a vicinity of x if p(x) = 0 . , 
(2) the convergence of It[~J is of the first order in a 

vicinity of x if o < I p (x) I < 1 . , 
(3) if I p (x) I = 1, either Vex) J4 ~ or every vic.inity of 

x contains infinitely many non-convergennt sequences of 

values generated by It[~ J . , 
( 4 ) if I p (x) I > 1, then Vex) = ~. 

We call the case (1) strongly stable, the case (2) weakly 

stable, the case (3) semistable .and the case (4) proper

ly unstable. If It[~J shows the convergence of the n-th 

order in a vic-ini ty of a strongly' stable fixed point x, we 

may dall x a stable fixed point of the n-th order, which 

is the case when x (ri~) is an (n-l)-ple zero of ~ '(x) 

or x = 00 is an n-ple pole of ~ (x). 

It can elementarily be verified that there are deg ~ + 1 

different fixed points of ~ if and only if all of them have 

dissipation factors other than 1. So we call x a multiple 

fixed point if p (x) = 1 and a simple fixed point otherwise. 
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Table 1. Classification of Fixed Points 

stable fixed point (lJ ) unstable 
0 

fixed point (A) 
0 

strongly weakly 
semis table properly 

stable stable unstable 

simpl,e multiple ,'simple 

p = 0 o < Ipl < 1 p =: 1 I p I =,1 
1 < Ip I p ;'"1 

second or first domain of domain of 
higher order order convergence convergence 

convergence convergence exists is absent 

the fixed point is contained the fixed point is not contained 
in a domain of convergence in' any domain of convergence 

The multiplicity ~f the" fixed point x of ~ is the 

multiplicity of the root x of the·equation ~(x) = x when 

x ~ 00, 'whereas it is the multiplicity of the'root 0 of 

the equation zt(l/z) =.1 when x = 00. 

1.4. Julia's theory. ,The results of Julia's study [-4] 

on the global convergence properties of rational iterations 

may be summarized into the following four theorems. 

[Theorem I] If deg ~ > 2 and ~ has no multiple fixed -
point, then ~ has at least one properly unstable 

fixed point". 

[Theorem II] Let E be the set of all antecedents of all 

(1) properly unstable fixed points and (2) semistab1e fixed 

pOints whose dissipation factors are roots of I, of ~ 

with deg ~ ~ 2 andE' be its derived set. Then every 

neighborhood of every point of E' contains antecedents 

of all the points on C except at most two points, and 

E' cQincides with the boundary of U(x), where x is an 

arbitrary fixed point of ~. 
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[Theorem III] Let x be a stable fixed point of ~ with 

deg ~ ~ 2, and the convergence region of It[~J which 

contains x be dehoted by B(x). Then B(x) contains 

at least one critical point of ~, and every component 

of U(x) other than B(x) is an antecedent of B(x) 

if U(x);l B(x). 

[Theorem IV] Let x be a semistable fixed point of ~ 

with deg ~ ~ 2, and the convergence region of It[~J 

which has x on its boundary be B(x), If x is a 

multiple fixed point with multiplicity p, there are 

p - 1 such regions, each of them containing at least 

one critical point of ~. If p(x) is an n-th 

primitive root of 1 with n > 2, then the number of 

B(x)'s is a multiple of n and at least one of them 

contains at least one critical point of ~. In both 

cases, every component of U(x) is an antecedent of 

B( x) . 

Theorem I is connected with the fact that, if ~ has 

N + 1 simpl~ fixed points 

then we have 

x (i = 1, ... , N + 1; N = deg ~) 
i 

(1.2) 
N+l 1 r = 1 , 
i=l 1 - P(xi) 

which will be used in the next section of this paper. 

Theorem II implies that E' is a perfect set (i.e., 

every point of E' is its accumulation point) and that 

a convergence region is either simply connected or infinitely 

multiply connected. 

Julia named the domain D(x) 
o 

in' Theorem III and 

Theorem IV the domain of d~rect conver6e~ce. If B(x) = U(x) 
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(which is the case if x is a stable or a double fixed point 

and H(x) contains N - 1 critical pOints of ~), H(x) is 

naturally called a complete convergence region. 

2. Special Classes of Rational Iterations 

and the global convergence features of It[~J 

are known~ those of It['] can easily be derived therefrom. 

Hence in investigating the global features of the iteration 

by any given rational function, we may find a simplest 

function in the equivalence class to which it belongs. The 

following theorems are useful for this purpose. 

[Theorem 2.1] A rational function ~ of degree N is 

equivalent to a fraction whose denominator is a polynomial 

of degree N - 1 . 

Proof: If ~ is a simple pole of ~, the theorem obviously 

holds true. If ~ is not a simple pole of ~, it can be 

verified elementarily that there exists at least one fixed 

point x of ~ such that ~'(x) ~ 0 and x ~ 00. Hence 

if we put T = 1/( z - x) , the point at infinity is a simple 

pole of T~T_l which is equivalent to ~. 

~Theorem 2.2J The n.a.s.c. that a rational function ~ of 

degree N is equivalent to a polynomial is that it has 

a stable fixed point of the N~th order. 

Proof: If 00 is an N-th order stable fixed point of ~, 

~ is obviously a polynomial of degree N .and vice versa. 

If x ~ 00 is a stable fixed point of the N-th order, then 

the point at infinity is an N-th order stable fixed point 

of T~T_l where T. = 1/ (z - x) , and vice versa. 
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[Theorem 2.3J If a rational function ~ of degree N has 

two stable fixed points of the N-th order, then ~ is 

equivalent to zN and vice versa. 

Proof: Let a and a be fixed pOints of the N-th order. 

Then putting T = (z - a)/(z - a) if a F 00 and a F 00 

and T = z - a if a' F 00 and a = 00, we have T~T_1 = zN 

because zN is the only polynomial that has two fixed points 

of the N-th order at 0 and 00. The converse is obvious. 

Now suppose that f is a rational function which is not 

a linear polynomial, and put 

(2.1 ) ~(z) = z - f(z)/f'(z) . 

It can easily be verified, by means of the Laurent expansions, 

that all the fixed points of ~ are simple, their dissipation 

factors being as shown in Table 2. 

Table 2. Fixed points of ~(z) = z - f(z)/f'(z) 

where f is'a rational function of z 

of f order fixed point of ~ p(x) . .' 

1 strongly stable 0 

zero 
x:/-oo m (~·2) weakly stable 1 - 11m 

pole m properly unstable 1 + 11m 

neither a zero strongly stable 0 nor a pole 

x· oo 
weakly stable m/(m + 1) zero m 

pole m (~ 2) properly unstable ml (m - 1) 
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We call ~ defined bS (2.1) the Newton transform of 

It[~J being Newton's method for solving the equation fez) 

= O. Hereafter in this paper, the "Newton transform" will 

be abbreviated as "N.T.". 

[Theorem 2.4] The n.a.s.c. for a rational function ~ to 

be the N.T. of another rational function f is that the 

dissipation factor of every fixed point of ~ differs 

from 1 by the inverse of a natural nu~ber. 

Proof: The necessity is evident from Table 2. Conversely, 

let Ai (i = 1, ... , L) and II j (j = 1, 

points of ~ with 

(2.2) and 

, M) be the fixed 

respectively, where ~i and mj are natural numbers. Then 

all these fixed points are simple so that from (1.2) we have 

(2.3) 

Hence, if we put 

(2.4) ~(z) = z - f(z)/f'(z) 

where 

n(z - llj)/~(Z - Ai) if ~(oo) f 00, 
j 

(2.5) fez) = lJ(z llj){~k(z Ai) if Ak = 00 , 
J 

j~k(z - llj)/¥(Z Ai) if llk = 00 , 

then, referring to Table 2, we have the relation 

(2.6) ~(z) = ~(z) , ~ , ( z) =. ~, ( z ) 

for deg ~ + 1 distinct points (fixed points of ~). Hence 

~(z) and ~(z) must coincide with each other for all 

values of z. 
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· The next theorem is derived directly from Theorem 2.4. 

[Theo~em ~.5] A function equivalent to the N.T. of a 

rational function is also the N.T. of a rational function. 

On the other hand, from (2.3) we have 

[Theorem 2.6] The N.T. of a rational function has at least 

one stable fixed point. 

[Theorem 2.7] If ~ is the N.T. of a rational function and 

has only one unstable fixed point, then ~ is equivalent 

to the N.T. of a polynomial. 

Proof: If ~(z) = z - f(z)/f'(z) and ~ has only one 

unstable fixed point at ~,then 00 is the only pole of f 

·~o that f is a polynomial. From this and the invariance 

of' dissipation factors under equivalence transformation 

follows the theorem. 

It must be noted that the equivalence of N.T.'s of two 

ratlonal functions does not mean the equivalence of the 

rational functions themselves. For instance, the N.T. of 

cf(z), where c is a constant other than 0 or 1, is 

the same as that of f(z), whereas cf ~ f. On the other 

hand, if ~ is the N.T. of f and S is a linear 

polynomial, S~S-l is (in general) not the N.T. of SfS_l 

but that of fS-l , which will be called a function 

similar to f. 

,~ .. 
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Example 1. If a quadratic function has no multiple fixed 

point, it is equivalent to 

(2.7) ~(z) z -
z2 - 1 - k(z - p) , 

where k ~ 1, P ~ ±l . Since the dissipation factors of 

the fixed pOints of the ~(z) are 

(2.8) p(±l) = 1 - 2 
and p(oo) k 

k(l p) = =F k - 1 , 
we may suppose I p(oo) I > 1 or 

(2.9) Re(k) > 1/2 

without loss of generality (cf. Theorem I in § 1.1). 

Within the restriction of (2.9), the real parts of both 

k(l + p) and k(l - p) may be less than 1, which shows 

that all fixe~ points of a rational function may be 

properly unstable. 

From Theorem 2.2, ~(z) is equivalent to a quadratic 

polynomial if either k(l - p) or k(l + p) equals 2. 

From Theorem 2.4, ~(z) is the N.T. of a rational 

function if k is a positive integer (greater than 1) and 

k(l + p) is an even integer. Especially) if both k(l ~ p) 

and k(l + p) are positive even integers, ~(z) is the 

N.T. of a polynomial. 

If k = 2 and p = 0, then ~ is the N.T. of 2 z - 1 

which is similar to all quadratic polynomials with simple 

zeros. On the other hand, ~ ~ z2 if k = 2 and p = 0. 

The well-known properties of Newton's method applied to 

quadratic equations with simple roots can therefore be 

deduced most naturally from the properties of It[z2J. 
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'Note that z2 itself is the N.T. of the linear function 

z/(z - 1). Furthermore, z2 is equivalent to 2z - kz2 

(k ~ 0), the latter being the function iterated in the 

widely used method for calculating the inverse of k. 

Example 2. If a quadratic 'function has a multiple fixed 

pOint, it is equivalent to either 

(2.10) z + 1 + a/z (a ~ 0) or z + liz . 

The former, ha~ing a double fixed point at 00 and a simple 

fixed point at -a, is equivalent to polynomials if and 

only if a = 1. The latter has a triple fixed point at 00 

and is not equivalent to any polynomial. 

Example 3. Bailey's iteration for root extraction is 

defined by 

(2.11) t (z) - z[(n - l)zn + (n + l)a] 
(n + l)zn + (n - l)a , 

where n ~ 2, a ~ 0 (cf. [7]). Th, dissipation factors 

of the fixed points of this function are 

. , n + 1 (2.12,) p(a'lS) = 0 p(O) = p(oo) = , 
n - 1 

Hen~e t must be the N.T. of a rational function if n 

odd. In fact, we have 't (z,) = z - f(z)/f'(z) by putting 

(2.13) fez) = z 
n-1 

-T(zn - a) . 

is 

It is easy to verify that all the stable fixed points of t 

are of the third order. Especially, if n' = 2, the function 

is equivalent to z3 from Theorem 2.,. 
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3. Divergence Centers 

If we cannot find a rational function ~. in the equivalence 

class of ~ such that the E" of It[~J is known to be a 

circle or a closed line segment~ then the E' of It[~] is 

not an analytic curve [3],[4J. In this most general case, 

the shape of the E' can be traced only numerically, for 

instance, by plotting as many points of E as possible. 

This method of numerical plotting has several theoretical 

advantages as will be shown'later. For simplicity, the set 

of all unstable fixed points of ~ other than semistable ones 

with dissipation factors whose arguments are incommensurable 

multiples of '/I' will be denoted by A =- O.} and the n-th 

antecedent of A by A = 
0 n 

(3.1) En = 

then we have lim En = E. 
n-+co 

0 0 

{A }. If we write 
n 

n 
V A 
k=O k 

, 

If the numerical values of A's 
o 

€ A 
o 

are known, those of A's E A, A's E A etc. can ,be 
1 1 2 2 

~(A) = A successively. 
k k-l 

calculated by solving Hereafter 

A will be called a divergen6e center of the k-th order. 
k 

~xa~le 4. It can easily be verified that every, quadratic 

polynomial is equivalent to 

(3.2) 4> (z) _ z2 + P , 

where p is a constant. Here we restrict ourselves to the 

case where p is real. The fixe~ points of (3.2) are 

C1 = (1 - II - 4p)/2, C2 = (1 +'11 4p)/2 

and co, rhe~r gi~§ipation factors being 2Cl ) 2C2 and 0, 

we have 

(3.4) 
if -3/4 < p ~ 1/4 , 

otherwise . 
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The divergence centers are calculated successively by means 

of the formulae: 

(3.5) A = -A A = ±.,t A -, 
1 0 k k-l 

Rough sketches of E' mechanically made 

values of the points of ES for several 

p are shown in Fig. 

p ~ -2.500 

1. (Cf. Example 

I ' .... ". 
! 

-'-------"'1 "'--"-j" 'i ~ ,,: . 
o : 

: 
! 
'! 
! ,. • -2.000 I' · -<>.". 

j ,. • '1.0011 I p. 0.000 

~. ········(r~~· 
o : . ~ · . · . · . · . · . · . · . : : 

: : 

5 

p (k ~ 2) . 

from numerical 

real values of 

in § 5. ) 

i ' · ..... 

1 ,. = 0.250 

! P = 0.500 

. 
I'~ i ,.\ 

r : '\ 
+-.r. i /'.~ 

.......... ,. __ ..... _ .. L~,_ ....... _ .... ~ 
. " it '~ " : .. ~ .. 

\0 : " 

"T' 
t 

i:i.g.l.. Ju11~'1i 61niularitY fiet: lli' for It[z2 + p] when p 

takes several real values (mechanically plotted from 

numerical values of the points of Ea) 
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4. Minimal Figures 

If A ~ B and both A and B are figures of It[~]. 

we call B a subfigure of A. If every sub figure B of 

a r{gure A such that 

(4 .• 1 ) 

bas the same closure as A, we call A a minimal figure 

of It[~]. A minimal subfigure of A which is not contained 

in another minimal subflgure of A will be called ~. kernel 

of A. 

For example, either ~'fixed point of ~ or a set of 

fixed points' of ~ is a'minimal figure of It[~]. If 

deg ~ ~ 2, then E, the set of all the divergence centers, 

is not a minimal figure of It[~],.iti kernel being ~(= EO)' 

i.e., the set of all' unstable fixed points of ~. 

An n-cycle of It[~], i.e., the set of n distinct 

points Xl, X2, ••• , xn satisfying 

(4.2) 

is another example of minimal figure. 

From the above definitions, the following proposit~ons 

are easily derived. 

(1) If a minimal figure is a finite set, each of its elements 

is either a fixed point or a member of some cycle. 

(2) If a minimal figure consists of a finite number of· 

connected components, each. component coincides with one 

of its own consequents. 

(3) The kernel of a. figure which i, perfect (i.e., which 

coincides with its derived set) is perfect. 
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(4) The kernel of a figure which is an open set is an open 

set. 

5. Areas of Direct and Indirect Convergence 

Hereafter we always suppose that 

(5.1) N :: deg ~ ~ 2 and U(x) yi ~ • 

The kernel of U(x) will be denoted by H(x) and called 

the area of direct convergence toward x. From the property 

(4) of the preceding section, H(x) is an open set. A 

component domain of H(x) is nothing but Julia's "domain 

of direct convergence" which is denoted by R(x) in this 

·paper. Especially, if x is either a stable or a double 

fixed point, H(x) coincides with R(x). 

As a natural consequ~nce of its definition, H(x) is 

a minimal figure of It[~J. If x is either a stable or 

a multiple fixed point, H(x) is also a minimal figure of 

It[~J. 

If U(x) yi H(x), we call U(x) - H(x) the area of 

indirect convergence toward x and its connected component 

a domain of indirect convergence toward x. A domain of 

indirect convergence that is an n-th antecedent of H(x) 

will be denoted by R(x). The union of all H(x)'s will be 

denoted by H(x). Thus we have 

(5.2) 
co co 

U ( x ) = V U ( x ) = UV H ( x) • 
n=on n=O 

5.1. Properties of H(x) and Hi&.. It has already 

be~n proved by Julia that H(x) has a finite number of 

components if either I peA) I < 1 or p(x) is a root of 

a cyclotomic equation. The following theorems will hold 
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true even if Ip(x)1 = 1 and p(x) is not a root of' a 

.cyclotomic equation. For simplicity, we may write H for 

H(x) and H for H(x) if x is either understood or 

indeterminate. 

[Theorem 5.1J There is at least one unstable fixed point 

on ag(x). 

Proof: If x is a semistable fixed point, the theorem is 

obvious. If x is a stable fixed pOint, it is a simple 

fixed point so that at least one fixed point y distinct 

from x exists. The fixed point y must lie either on 

ag(x) or in a region ~ bounded by a closed Jordan curve 

that is a subset of ag(x). In the former case, y must 

be unstable and the theorem holds. In the latter case, 

both ~ and a~ being invariant figures, we can prove the 

existence of at least one fixed point on a~ by reductio 

ad absurdum, through applying Caratheodory's theorem [9] 

td ~. This fixed point on a~ is naturally unstable. 

[Theorem 5.2] If H(x) consists of a finite number of 

g(x)'s, then every H(x) coincides with one of its own 

consequents, i.e., there exists n for each H(x) such 

that H(x) is a figure of It[~n]. 

Proof: This theorem is a special case of the property (2) 

of minimal figures mentioned in the foregoing section. 

LTheorem 5.3J If H is a figure of It[~n]' it is multiply 

connected if and only if it contains a pair of critical 

points of ~n around which the same branches of ~-n 

exist. 
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Proof: Let r be a connected component of aD on which a 
o 

fixed point of • exists. Then r must be a figure of 

It[.n]· If B is multiply connected, aB contains at leab\ 

one branch of .-n(r) other than r itself. (For, every 

vicinity of a point on E' contains antecedents of all other 

points on E' due to Theorem II.) Hence B must contain at 

least LWo branches of .-n(z) ~ B divided by a closed curve 

on which a pair of critical points of .n exist. Conversely, 

if B contains such branches of .-n(z) (l B, then .-n(f) ~ 

dB has at least one branch other than r itself so that 

B cannot be simply connected. 

As was already painted out by JuJla, a B that is not 

simply connp.cted is infinitely multiply connected. 

The next theorem can readily be derived from Theorem 5.3. 

[Theorem 5.4J If B is a figure of It[.n J, it is 

(1) simply connected if there is only one unstable fixed 

point of .n on dB; 

(2) simply connected if there is only one critical point 

of ·n in D . 
o ' 

and 

(3) multiply connected if all the critical points of .n 

are contained in B. 

5.2. Divergence centers on dR __ ' On the other hand, 

fronl Theorem 5.1 and the definition of R, we have 

[Theorem 5.5J aR contains at least one A and no A such n m 

that m < n. 

Furthermore, since .-l(z) ~B(x) has two or more 

branches if x ~s either a stable 6r a multiple fixed point, 

18 



there must be at least one } on ag(x). Hence the 

following theorem is verified by mathematical induction. 

[Theorem 5.6J If x is either a stable or a multiple 

fixed point, there exists on aR(x~ a divergence cente v ' 

of any order not less than n. 

The following theorem can be proved in a similar way. 

[Theorem 5.7J If p(x) is a root of a cyclotomic equation~ 

there exist on ag(x) divergence centers of all orders. 

These theorems are useful for numerically tracing the 

shapes of convergence regions by the method described in § 3. 

[Theorem 5.8] If it is known that B is a simply connected 

region which is a figure of It[~nJ and that ~-n(Z)~ B 

has M branches, then aB is a closed Jordan curve or 

not according as the number of fixed points of ~n on 

ag equals M - 1 or not. 

Proof: If B is a simply connected domain, there exists a 

univalent analytic function g 

c 

which maps B onto the 
def 

interior of the unit circle [9J. Since 'I' = g~ng-1 
maps the interior of C onto itself and its inverse '1'-1 

has M branches on C, 'I' has M - 1 different fixed 

points on C. In order that aB may be a closed Jordan 

curve, these fixed points of '¥ on C must correspond 

one-to-one. to the fixed points of ~n on . aD., Conversely, o 

if aD contains M - 1 different fixed points, it can be 
o 

proved that the mapping aB ~ C is a bijection and hence 

aB must be a closed JorQan curve. 
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5.3. Polynomial case. If ~(z) is a polynomial with 

N = deg ~ ~ 2, the point at infinity is a stable fixed point 

of order N so that we have 

and all branches of ~-l(z) are around 00 which is a 

critical point of ~. Therefore, applying Theorem 5.3 

and Theorem 5.8 to 8(00), we have 

(1) B(oo) is simply connected if and only if it contains 

no finite critical point of ~ . , 
(2) E' is a closed Jordan curve if and only if no finite 

critical point is in 8(00) and ~ has N - 1 different 

unstable fixed points. 

Example 5. In case ~(z) = z2 + P where p is a real 

constant, B(ooJ is simply connected if and only if 0 ¢ 

8(00), which is equivalent to -2 ~ P ~ 1/4 as is verified 

elementarily. On the other hand, ~ has only one unstable 

fixed point if -3/4 < p ~ 1/4 and two unstable fixed points 

otherwise (cf. Example 4). So' E' is a closed Jordan curve 

if and only if -3/4 < p ~ 1/4. (See Fig. 1.) 

Example 6. If N ~ 3, it sometimes happens that a multiply 

connected convergence region coexists with a simply connected 

one. For instance, B(oo) of It[z3 - 3z + 3J is multiply 

connected because it contains a finite critical point -1, 

while another'finite critical point 1 coincides with a 

stable fixed point and hence 8(1) = H(l) is simply 

connected, Moreoyer:: ~B(l) is a closed Jordan curve 

because it contains only one single critical point of ~. 
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Fixed points other than 1 and ~ are properly unstable . 
. 

Therefore E' consists of a countably infinite number of dis-

crete closed Jordan curves which separate U(l) from U(~). 

6. Newton's Method Applied to Polynomial Equations 

Let fez) be a polynomial with N (~ 2) different zeros 

and 4>(z) be its Newton transform. We have 

(6.1) N* d~f deg f ~ N = deg 4> . 
"-., 

Zeros of f are stable fixed points of 4>, while the point 

a~ infinity is the only unstable fixed point of 4>, with the 

dissipation factor 

(6.2) 

Hence, the following properties of It[4>] are readily 

derived from the theorems in the preceding section. 

(1) Every B is a simply connected infinite domain, while 

D (n ~ 1) is a simply connected finite domain. 
n 

(2) ag is a closed Jordan curve if and·only if B contains 

only one critical point of 4> which is a simple critical 

point. 

aD (n ~ 0) contains divergence centers of all orders 
n 

equal to or greater than n, and never contains those 

of orders less than n. 

For aimpllg1ty. a B which is bounded by a closed Jordan 

curve will be called a normal B' Since there are N 

different stable fixed points and no more than 2N - 2 

different critical points of 4>, the following two 

propositions are derived from this definition and (2). 
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(4) At least two B's are normal. 

(5) If one B is complete, all the other B's are normal. 

On the other hand, it can be proved from (2) and 

Caratheodory's theorem that ~-l(z) has two branches on the 

boundary of a normal B, which implies the following fact. 

(6) If D is normal, then aB contains only one A and 
0 I 

2n - l A's (n ~ 2), the arrangement of {AI o ~ k < n} 
n k 

on aB being the same as that on the unit circle in the 

case of It[z2] . 

6.1. Center of gravity of roots. Now we define symbols 

~, mi and G as follows. 

~ a stable fixed point of ~ (i.e., a root of f = 0); 
o 

. (another index i is attached as the subscript if 

necessary). 

~ : a root of. (k ~ 1). 

mt : the multiplicity of as a root of f = o. 
G : the center of gravity of the roots of f = 0, i.e., 

(6.3) 
N 

G = l m·u·/N* . 
i=l ~'O ~ 

Note that, if Iz - GI is sufficiently large, we have 

(6.4) ~(z) = G + z - G 
p(oo) 

This implies that, if a figure of It[~] contains a point 

in every neighborhood of 00, it is a repe~ition of similar 

configurations which are arranged asymptotically like a 

geometrical progression with G as the center of similitude. 

For example, if B is normal and. we define X(R) as the 

exterior of the circle with center G and radius R, then 
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ag r"\ X(R) is approximated by 

(6.5) U'{p(oo)n(z - G) + G I z e.. A} , 
n-O 

where 

(6.6) A = ag" X(R) - aB t\X[p(oo)R] 

usually consists of two half-closed finite arcs of ag". 
Hence it is inferred that ag is an analytic curve only 

when it coincides with a straight line which passes G. 

-In the other (general) case, aD must be a curve somewhat 
o 

like a branch of hyperbola --- more exactly, X(R) r"\ aB 
has enumerable common t~ngents with a hyperbola-like 

analytic curve whose asymptotes are two straight lines 

passing G, and all the divergence centers on aB are 

nodes of aBo 

6.2. Quadratic case. If N = 2, both B's are normal 

and complete (irrespective of the values of N*) and hence 

(6.7) an(lll.') = aU(ll') = E' o O. ol. (i = 1, 2) 

is reduced to an infinite closed Jordan curve. It can easily 

be verified tnat G = A 
1 

if 

ml > m2 · Therefore, E' is a straight line passing G 

if ml = m2 while i~~s a non-analytic curve as was described 

in § 6.1 if ml F m2 

. 6.3. Main part of aB~ If M > 3, every neighborhood 

of an arbitrary point on aB contains an infinite number 

of closed Jordan curves. We shall call each of these closed 

Jordan curves a Jordan component of aBo From Julia's 

Theorem II, the exterior (with respect to B) of every 

Jordan component contains at least one conv~rgence region 
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toward another stable fixed point. Hence the closed curve 

+s an invariant figure of It[~J if and only if its exterior 

contains another domain of direct convergence, i.e., if and 

only if it is an infinite Jordan curve. Such a Jordan 

component of dB will be called a main component of dB 
and the union of all the main components of dB will be 

called the main part of aBo 
(7) Both a main component and the main part of dB are 

minimal figures of It[~J, the main part being the kernel 

of the union of all the Jordan components of dB. 
Note that aB is a tree-like chain of infinitely many 

closed curves and the tops of its infinitely many "twigs" 

do not belong to any Jordan component. 

On the other hand, the following propositions are proved 

by the same reasoning~s.was used in the proof of Theorem 

5.8. 

(8~ If M ~ 3, aB has M - I main components. 

(9) Each of the main components of aB contains only one 

A and 2n-l A's (n ~ 2), their arrangement being the 
1 n 

same as that on the boundary of a normal D. o 

Furthermore, the foregoing description on the shape of the 

boundary of a normal B applies also to the shape of each 

main component of aB in this case. Hence a normal B can 

be considered a~ a special B whose boundary consists of 

only one main component. 

6.4. Mechanical sketching. Based upon the above proper-

ties of Newton's method for polynomial equations, we have 
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schemed a proces~ of making a sketch of the convergence 

regions mechanically. First, we obtain numerically all 

the zeros of f, all the critical points of ~ and all 

the divergence centers of a few lowest orders. Then, we 

draw smooth curves each of which contains divergence 

centers of lowest orders on a main component of aB and 

is asymptotic to a pair of half-straight lines starting 

from G. Let the union of all such curves be denoted by 

ro and ~-n(ro) by rn· Then rn gives a sketch of 

{aD I 0 ~ k $ n} and, among the parts of rn approximating 
k 

aD's 
k 

, those for lower values of k will approach their 

exact form as n increases theoretically, at least. 

In practice, we cannot draw too microscopic details of the 

convergence regions. We have omitted them in the process of 

numerical calculation through neglecting such divergence 

centers that are too close to those of lower orders. 

If we calculate all ~'s parallel to r k and plot 

their locations (except those which are too close to r k ) 

with appropriate symbols, most remarkable convergence regions 

toward each zero of f will be discriminated from those 

toward other zeros. (See Figs. 2--5~ where the convergence 

regions toward a' fixed point identified by a numeral are 

distinguished by the same small numerals at ~'s in them.) 

6.5. Equations whose roots are all simple. If N = N*, 

the critical points of ~ are zeros of ff" and A's are 
1 

zeros of f'. On the other hand, ~(z) = ~ ~ z is equivalent 
o 

to [f(z)/(z - ~)J' = 0 if ~ is a simple zero of f. 
o 0 
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Hence 

(10) 

1° 

2° 

3° 

follows the following property of It[~J. 

If all the zeros of f are simple, then 

B is normal if no zero of fll is in it, 

B is complete if all the zeros of fll are in it, 

the gravity center of all the critical points of 

is G, 

the gravity center of all the A's 
1 

is G, 

and 

(6.7) 

the gravity center of all the 

U(ll.) is 
oJ. 

lJ'S contained in 
1 

def I llj/(N - 1) = Gi • 
jii 0 

We may restrict ourselves to the cases where G = ° 
~ithout loss in generality, since the other cases are 

obtained simply by parallel displacements therefrom. 

t 

Examole 7. In case fez) = z3 + pz + q ,where p and q 

are real constants satisfying ~ = 4p 3 + 27q2 ~ ° , the 

origin coincides with G and the only zero of f". So B 

is complete or normal according as it contains ° or not. 

Since all the coefficients of t is real, lJ must be real 
o 

if B(~) ~ 0, which happens only when p~ > 0. The boundary 

of the complete B is E' so that each of its two main 

components must coincide with the boundary of a normal B. 

If p~ < 0, then we have p < ° so that there are two 

real A's, one of which must be a common boundary point of 

two B's toward conjugate complex zeros of f. 

If p~ = 0, the origin is the only A which must be 
1 

common to the boundaries of all the three B's. 
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Thus in this case, there are four types of global 

convergence features of It[~J as shown in Fig. 2 . 

• 3 _ 20z _ 25 • 0 
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Newton's 
applied to the equation 3 0 where z + pz + q = p 

are real and satisfy b. - 4p3 + 27q2 :f 0 i) p < 0, 

ii) P > 0, b. > 0 . iii) p - 0, b. > 0 . iv) p < 0, , , 

27 

il) 

iv) 

method 
and q 

b. < 0 

b. > 0 . 



Example 8. In case fez) = zN - a (a ~ 0, N ~ 3), the 

origin is the Qnly zero of fll and the only A 
1 

at the 

same time. Hence all the B's are normal and, from 

Theorem 5.5, the origin-is 

common to the boundaries 

of all the g's and all 

the D's. Every U has 
1 

one D if N = 3, and 
1 

N - 2 ~'s if N ~ 4. 

Every finite divergence 

center is therefore common 

to the boundaries of 

N + N(N - 2) = N(N - 1) 

convergence regions. (See 

Fig. 2 iii) and Fig. 3.) 

Fig. 3 

Convergence regions of Newton's method 

applied to z4 - a = 0, where a is 

a positive real constant. 

Example 9. In case fez) = zN - az (a ~ 0, N ~ 3), the 

origin is the only zero of fll and a root of f = 0 at the 

same time. Therefore, B(O) is complete and the other B's 

are all normal. From (8), the main part of ag(O) consists 

of N - 1 components, each of which must coincide with the 

boundary of another B because aB(O) = E'. The total 

number of ~'s being (N - l)(N - 2), every A 
1 

to the boundaries of two B's and N - 2- D's. 
1 

is common 

Therefore, 

every finite divergence center is common to N - I Jordan 

components of aD(O) = E'. 
o 

(See Fig. 4.) Note that, in 

this case, ~ is equivalent to a polynomial. 
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Fig. 4. Convergence regions of Newton's method applied to 

i) z3 - az - ~ and ii) z4 - az - 0 (a > 0). 

Example 10. Let us take up the case where f has N real 

zeros (i = 1, "', N) where N ~ 3 and ~i < ~i+1 . 
o 0 

For simplicity, B(~i) will be meant by Bi. It is known 

that 8 i contains only one zero of f" if 2 < i ~ N - 1. 

(Cf. [7],[8J.) Therefore, M = 2 in 8 1 and 8N' whereas 

M = 3 in the other B's. In other words, Hl and BN are 

normal, whereas the boundary of each of the other D's ,has 
0 

two main components. Each of the main components crosses 

the real axis at A which 
1 

is a simple zero of l' v , wherefrom 

it can be proved that ag i share::; a maln, cumponenl with 

a8 1 + 1 . Every divergence center on agi (2 ~ i ~ N - 1) is 

cornman to a pair of Jordan components of agio (See Fig. 2 

i) , Fig 0 4 i) and i Fig. 5.) 

29 



-~-~-

Fig. S. Convergence regions of Newton's method applied to 

z4 - lSz2 - 10z + 24 • 0 whose roots are all real. 

A Q K NOW LED GEM E N T S 

This study started from preliminary experimental researct 

about the convergence regions of Newton's method applied to 

cubic equations, which was performed by Mr. Toshiyuki Iida, 

Mr. Masato takeichi and the author as a generalization of 

RaIl's "convergence map" [12J and was reported at the meeting 

of the Union of the Japanese Scientists and Engineers (Nikka

giren) two years ago. The author would like to express his 

sincere thanks to Prof. Sigeiti Moriguti and Prof. Masao 

Iri for many theoretical suggestions and .continuing encour-

agement. He is also indebted to Prof. Toshio Uno, 

Dr. Tsutomu Date and Mr. Takahide Ogawa whose comments on 

several theoretical issues were inspiring to the author . 

. Numerical calculations of the ex.amples contained in this 
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pa~er were conducted by the HITAC 8800-8700 computer system 

in the Computer Centre of the University of Tokyo, and the 

mechanical plotting of convergence regions was made with the 

flat-bed type X-Y plotter connected to the system. 
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O. Introduction 

The present paper is concerned with the multi-point boundary 

value problem for nonlinear Volterra integrodifferential equations. 

Let 

(0. 1) d Jt dtx(t)=f(t,x(t), g(t,s,x(s»ds) 
-1 

be a given system of nonlinear integrodifferential equations 

subject to a given multi-point boundary condition 

(.0. 2) 

Here x(t) is the unknown vector valued function of t defined on 

the interval J={tl-l<t~l}·. Denote that S={(t,s)l-l~s<t<l}. Assume 

that f(t,x,y) and g(t,s,x) are vector valued twice continuously 

differentiable functions of (t,x,y) and (t,s,x) on the domains 

JxDxE and SxD respectively,where D and E are bounded open domains 

in the Euclidean space with the Euclidean nor~ » " which satisfy 

the relation 

(0. 3) {xiII xll<2max{\\g(t,s,x)1I1 (t,s,x)e-SxD}}CE. 

Moreover assume that Li(i=O,l, ••••• ,N) are square matrices, ~ is a 

-vector and ti(;t=O,l, ••••• ,N) are given points belonging to the 

interval J such that 

-l=t <t <o····<t =1. o 1 . N 

It is clear that our boundary value problem'includes as the 

special cases Cauchy problem, two-point boundary value problem 

and Hukuhara's problem. 
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The system of linear integrodifferential equations which 

corresponds to the system (0. 1) is written in the form 

(0. 4) ~tX(t)=A(t)X(t)+Jt B(t,s)x(s)ds+h(t), 
-1 

where A(t) and B(t,s) are square matrix valued continuous functions 

of t on the ihterval J and of (t,s) on the domain S respectively 

and h(t) is a vector valued continuous function of t on the 

interval J. 

In the present paper we shall construct the Green function of 

the multi-point boundary value problem (0. 4) and (0. 2). The 

Green function plays an impotant role in studying approximate 

solutions of the nonlinear integrodifferential equations (0. 1) 

and the boundary'conditi~n (0. 2). We shall prove three main 

theorems on approximate solutions of the boundary value problem 

(0. 1) and (0. 2). The first theorem, Theorem 4.1, says that for 

any isolated solution there exists an approximate solution 

accurately as it is desired by computing finite Chebyshev 

polinomial series. The second theorem, Theorem 4.2, says that the 

obtained Chebyshev approximate solution corresponds one to one to 

the isolated solution. The third theorem, Theorem 4.3, says that 

one can always assure the existence of an exact solution by 

checking several conditions on the obtained Chebyshev approximate 

solution and further it gives a method to obtain an error bound 

of the obtained approximate solution. 

The analogou~ theorems were originally proved by M. Urabe [5J, 



[6] Qopcerning the multi-point boundary value problem for nonlinear 

differential equations. Later concerning nonlinear integral 

equations, the theorem analogous to Theorem 4.3 was proved by 

M. Shimasaki and K. Kiyono [2] and the theorems analogous to 

Theorem 4.1 and Theorem 4.2 were proved by the author [7J especially 

for nonlinear integral equations of Fredholm type. On the other 

hand K. Tsuruta and K. Ohmori [3] proved the theorem analogous to 

Theorem 4.3 concerning the Cauchy problem for nonlinear integro-

differential equations and gave some examples of the numerical 

solutions with their aposteori error bounds. 

Throughout the present paper we denote Euclidean norms for 

vectors and matrices by the symbol II II. Moreover for any vector 

valued function x=x(t) continuous of t on the interval J we use 

two kinds of norms IIxllc and IIxlIQ which are defined as follows 

(0 .. 5) IIxllc=ma,x{lIx(t)JlltEJ} 

and 

(0. 6) 

In order to prove Theorem 4.1, we use the following lemma 

proved by M. Urabe [4] based on Newto~~Raphson's jrocedure for 

nonlinear algebraic equations. 

Lemma 0.1 Let 

(0. 7) F(Cl)=O 

be a given real system of equations, where Cl and F(Cl) are voctors 
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of the same dimension and F(a) is a continuously differentiable 

function of a defined in some region n of the a-space. Assume 

that the system (0. 7) has an approximate solution a=a for which 

the determinant of the Jacobian matrix J(a) of F(a) with respect 

to a does not vanish and that there are a positive constant a and 

a nonnegative constant K<l such that 

(0. 8) 

(1) na={allla-aU~8}Cn, 

(2) . \\J«(l)-J(a)n~K/M for any aena , 

(3) Mr/(l-K)<a, 

where rand M are numbers such that 

( 0 . 9) I\F (a )1\ <r and IIJ-l (a)1I <M. 

Then the system (0. 7) has one and only one solution 

and for a=ait holds that 

(0.10) detJ(a);iO and 1\ a-al\~Mr/ (l-K') . 

1. Some Properties of Chebyshev Series 

-a=a in Qa 

Denote by Tn(t) Chebyshev polynomial of degree n, that is, 

(1. 1) Tn(t)=cosne as t=cose 

for n=0,1,2,· •• ••. Then it is well known that for any continuous 

funotion x(t) of t on the interval J we have Chebyshev polynomial 

series expansion of the form 

(1. 2) 
00 

x(t)~ Lea T (t), 
n=O n n n 



where 

(1. 3) 

and 

(1. 4) 

e =1 o and e =12 for n=1,2,····· n 

For the expansion (1. 2) we obtain the Parseval's equality of the 

form 

(1. 5) 2 ~ 2 IIxl\ Q= l lian II • 
n=O 

In particular for finite Chebyshev series of the form 

m 
(1. 6) x (t)= Lea T (t) 

m n=O n n n 

we have 

(1. 7) and 

where a=(aO,al,·····,am). In fact the inequalities (1. 7) are 

proved making use of the Parseva1's equality (1. 5) and Schwarz's 

inequality. 

Suppose that x(t) is a continuously dlfferetiab1e function 

of t on the inte~val J. Let the Chebyshev polynomial series of the 

derivative of x(t) be 

00 

ddtx(t)~ L e a'T (t). 
n=O n n n 

Then it is easily proved that 

(1. 8) (ale . )a' -a' =2na n-l n-1 n+1 n 
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where a (n=1,2,·····) are the coefficients of the expansion n 

(1. 2) of x(t). Moreover making use of the relation (1. 8), we 

obtcrin 

00 

(1. 9) a'=l:2e I (n+2p-l)a +2 1· n np=l n p-

We define the operator P which expresses the truncation of m 

the Chebyshev polynomial series (1. 2) of the operand discarding 

the terms of the order higher that m, that is~ for any continuous 

function x(t) of t on the interval J expanded in the form (1. 2) 

(i.lO) 

If x=x(t) is a continuously differentiable function of t on the 

interval J, it is proved that for m=O,l,····· 

(1.11 ) 

(1.12) 

(1.13) 

and 

(1.14) 

H( I-Pm) xU C~a (m) 1\( I-P m-l) ~~\IQ <a (m) II~~ llQ' 

\I(I-Pm)x!\Q<al (m) n(I-Pm_l)~~IIQ<al (m)II~~UQ' 

(\~t ( I-Pm) xII c~(m+2) II (I-P m-l) ~~ I~ + \Ie I-P m+l ) ~~ IIQ 

Here and hereafter I ii the identity operat~r, P~l=O and a(m) and 

al(m) are monotone decreasing functions of m satisfying 

(1.15) 1:2/(m+l)<a(m)</2/m and 0l(m)=l/(m+l). 

These properties of Chebyshev polynomial series are proved in 

detail in the paper by M. Urabe [6J. 



2. Linear Integro-Differential Equations 

In the present section we study a system of linear integro-

differential equations (0. 4). We put 

(2. 1) Q(t,S)=A(t)+JtB(t,S)dS 
s 

and consider the matrix equation 

(2. 2) R(t,Sl=I+J:R(t,UlQ(u,SldU 

on the domain S. It is well known that there exists uniquely the 

continuous function R(t;s) satisfying the equation (2. 2). R(t,s) 

is also the unique solution of the adjoint equation 

(2. 3) ~SR(t,Sl=-R(t,slA(Sl-J:R(t,ulB(U'SldU 

satisfying the condition 

(2. 4) R(t,t)=I (identity matrix) 

on the domain S. The function R(t,s) is called Resolvent matrix 

with respect to the matrices A(t) and B(t,s). 

We introduce the following lemma proved by Tsuruta K. and 

K. Ohmori [3]. 

Lemma 2.1 The resolvent matrix R(t,s), which is the 

unique solution of the equation (2. 3) satisfying the condition 

(2. 4) on the domain S, 1s differen~iable with respect to t and 

satisfies the equat~on 

(2. 5) ~tR{t,~)=A(t)R(t,S)+JtB(tJU)R(U,S)dU. 
s 
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Let us consider the Cauchy condition 

(2.6)· 

Then we shall prove the following lemma. 

Lemma 2.2 For any vector Xo and any continuous functi~n 

h(t) the system (0. 4) subject to the condition (2. 6) is 

equivalent to the system 

(2. 7) X(t)=R(t,-l)Xo+ft R(t,s)h(s)ds 
-1 

on the interval J. 

In fact, similarly to the proof by Grossman S. I. and R. K. 

Miller [lJ, for any solution x=x(t) of the system (0. 4) satisfying 

~he condition (2. 6) we have 

Jt d a 
_l{R(t,s)dSx(s)+[asR(t,s)JX(S)}dS 

Then it follows from the equation (2. 3) that 

X(t)-R(t,-l)Xo-J t R(t,s)h(s)ds 
-1 

=Jt R(t,S)[A(S)X(S)+J s B(s,u)x(u)du+h(s)Jds 
-1 -1 

J t a Jt + [asR(t,s)Jx(s)dS- R(t,s)h(s)ds 
-1 -1 

ft ft a = _l[R(t,S)A(S)+ sR(t,U)B(U,S)dU+asR(t,S)]X(S)dS 

=0. 
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Conversely if x(t) solves the system (2. 7), it follows from. the 

equation (2. 5) and the condition (2. 4) that 

d Jt dtx(t)-A(t)x(t)- B(t,u)x(u)du-h(t) 
-1 

=~tR(t,-l)Xo+ft ~tR(t,S)h(S)dS+h(t) 
-1 

-A(t)[R(t,-l)Xo+ft R(t,s)h(s)ds] 
-1 

t u -f B(t,U)[R(U,-l)XO+J R(u,s)h(s)ds]du-h(t) 
-1 -1 

d Jt =[atR(t,-l)-A(t)R(t,-l)- _lB(t,U)R(u,-l)dU]Xo 

Jt a Jt + [atR(t,S)-A(t)R(t,s)- B(t,u)R(u,s)du]h(s)ds 
-1 s 

=0. 

It is clear that x(t) satisfies the condition (2. 6). This 

completes the proof of Lemma 2.2. 

We shall construct the Green function H(t,s) for the system 

(0. 4) and the multi-point boundary value condition (0. 2). 

Lemma 2.3 Let R(t,s) be the resolvent matrix with 

respect to the matrices A(t) and B(t,s). If the matrix 

(2. 8) 

is nonsingu1ar, then for any constant vector ~ and any continuous 

function h(t) tbe system (0. 4) subject_to the condition (0. 2) 

is equjval~lIt to tile system 
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(2. 9) X(t)=R(t,-1)G-1i+J 1 H(t,s)h(s)ds, 
-1 

where for t k_1<t<tk (k=1,2,·····,N) 

(2.10) H(t,s)= 

1 N 
-R(t,-l)G- L LiR(ti,s)+R(t,s);t _l~s<t_ 

i=p P P 

(p=1,2,·····,k-1) 

1 N 
-R(t,-l)G- i~kLiR(ti,s)+R(t,S);tk_1<s<t 

1 N 
-R(t,-l)G- L LiR(ti,s) 

i=k 

;t . l<s<t p- = p 

(p=k+1,·····,N). 

In fact, by Lemma 2.2, for any constant vector Xo any solution 

of the system (0. 4) satisfying the condition (2. 6) is expressed 

in the form (2. 7). The solution (2. 7) satisfies the boundary 

condition (0. 2) if and only if 

N N Jti 
i= L Lix(ti)=GxO+ L Li R(ti,s)h(s)dS. 

i=O i=O -1 

(2.11) 

Substituting (2.11) into (2. 7), we have th~ desired equality 

(2.9) with the function (2.10). This completes the proof of 

Lemma 2.3. 

The function H(t,s) in (2.10) is called Green function for 



the multi-point boundary value problem (0. 4) and (0. 2) or 

Green function with respect to the matrices A(t), B(t,s) and Li 

(i=O,l,·····,N). If we put 

(2.12) X(t)=J l H(t,s)h(s)ds, 
-1 

then x(t) satisfies the equations (0. 4) and the homogeneous 

boundary condition 

by Lemma 2.3. Therefore the expression (2.12) defines a bounded 

linear mapping in the normed space C(J) which is defined to 

consist of all continuous vector valued functions of t on the 

interval J. For brevity we express (2.12) in the form 

(2.13) x=Hh, where H;C(J)~C(J). 

Hereafter the mapping H defined in (2.12) or (2.13) is called 

H-mapping with respect to the matrices A(t), B(t,s) and L. (i=O,l, 
J. 

• •••• ,N). It it noted by Lemma 2.3 that the H-mapping can be 

always defined so far as the matrix (2. 8) is nonsingular for the 

resolvent matrix R(t,s) with respect to A(t) and B(t,s) and the 

matrices Li (i=O,l,·····,N). The norms of the H-mapping are defined 

corresponding to the norms (0. 5) and (0. 6) of vector valued 

functiQns belQng1ng to the space.C(J). Hence we have two kinds of 

norms \\Hllc and II HI\Q' which are defined in the usual ways in normed 

spaces. 
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3. Isolated Solutions 

We return to our multi-point boundary value problem (0. 1) 

and (0. 2) under all assumptions written in the section O. Denote 

by C(J;D) the space of all continuous vector valued functions of 

t on the interval J lying in the domain D for any teJ. Let 

(3. 1) . fx(t,x,y), f (t,x,y) and g (t,s,x) y x 

be Jacobian matrices of the functions f(t,x,y) and g(t,s,x) with 

respect to the variables x) y and x respectively. We define for 

any function x=x(t)€C(J;D) the functions 

~(t;x)=f (t,X(t),I t g(t,s,x(s»ds), 
x -1 

~(t,s;x)=f (t,X(t),f t g(t,s,x(s»ds)g (t,s,x(s», 
y -1 x 

where we note that for any function x=x(t)EC(J;D) and for any tEJ 

the vector It g(t,s,x(s)dSEE by the relation ·(0. 3). 
-1 

Let x=~(t) be any solution of the system (0. 1) satisfying 

the condition (0. 2) lying in the domain D for any tEJ. The system 

of linear integrodifferential equations 

d It dty(t)=~(t;~)y(t)+ ~(t,s;~)y(s)ds 
-1 

is called the first variation equations of (0. 1) with respect to 
6 

the solution x=~(t). When we denote by R(t,s) the resolvent matrix 

with respect to the matrices ~(t;~) and ~(t,s;~), the solution 

x=~(t) is called isolated solution of the boundary value problem 
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(0. 1) and (0. 2) if the matrix 

(3. 4) 
~ N 
G= L Lift(ti,-l) 

i=O 

is nonsingular. The word "isolated" comes from the following fact. 

Lemma 3.1 If the matrix (3. 4) is nonsingular, then, 

besides the solution x=~(t), there is no other solution of the 

boundary value problem (0. 1) and (0. 2) in a sufficiently small 

neighborhood of x=~(t). 
A 

The above lemma can be proved in the following way. Since G 
"-is nonsingular, by Lemma 2.3, there is the H-mapping H with respect 

to the matrices ~(t;x), ~(t,s;~) and Li(i=O,l, ••••• ,N). Let us 

take a positive number E so that 

(3. 5) E<1/3I1HIlC· 

For such E, by the ulliform continuities of the derivatives of the 

functions f(t,x,y) and g(t,s,x) and by the definitions of ~(t;2) 

and ~(t,s;~) in (3. 2), there exists a positive constant 0 such 

that 

(3.6 ) u={xlll x-'X'(t)II~c5 for some tE-JKD 

and 

(3. 7) 

and 

(3. 8) 

for any z=z(t)E.C(J;D) satisfying II zUC 

Suppose that, besides x=~(t), there is a solution x=x(t) of 

the boundary value problem (0. 1) and (0. 2) satisfying II x-'SC'I\ c~c5 .. 
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Then if we put 

(3. 9) y(t)=x(t)-~(t), 

we have 

(3.10) 

and 

d Jt dty(t)=f(t,x(t), g(t,s,x(s»ds) 
-1 

-f(t,~(t),ft g(t,s,~(s»ds). 
-1 

Using a mean value theorem, we rewrite (3.12) in the form 

where 

~tY (tl-J~ [~( t ;i+ey)y (t)+ C1 ~ (t ,5 ;i+ey)y (5 )d5 ]de 

.t(t;~)y(t)+ft ~(t,s;~)y(s)ds+h(t), 
-1 

h( t )--J~ [~(t ;2)-Ht ;It+ey)]y (t )de . 

_flft [~(t,s;~)-~(t,s;~+ey)Jy(s)dsde. 
o -1 

Not+n~ that for '~ny e~[03l] ~+ey=~+e(x-~)eC(JiP)~ that is, 

lIeyl\c~o, we have by (3. 7) and (3. 8) 

II hUc~e:IlYllc+2e:/Iy IIc=3e:/lyllc· 

On the other hand, by Lemma 2.3, for the equations (3.13) and 



the boundary condition (3.11) we have 

[ 1 " y(t)= H(t,s)h(s)ds. 
-1 

Thus it follows that 

By the inequality (3. 5) this implies that 

\I YI\C=O, 

that is, 

y(t)=O for any tEJ. 

This completes the proof of Lemma 3.1. 

4. Main Theorems 

In order to obtain an approximate solution of the multi

point boundary value problem (0. 1) and (0. 2), we consider finite 

Chebyshev polynomial series with unkn6wn coefficients aO,al ,····· 

,am' that are 

(4. 1) 

Here Tn(t) (n~Qal,·····) are Chebyshev polynomials defined in 

(1. 1) and en (n=O,l,·····) are constants defined in (1. 3). It 

is reasonable to determine the m+l coefficients aO,al,····,am in 

the finite Chebyshev polynomial series (4. 1) so as to satisfy 

the conditions that xm(t) lies in D for any t€J and that 

(4. 2) d Jt dt X (t)=p l[f(t,x (t), g(t,s,x (s»ds)] m ~ m . m 
-1 
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and 

N 
(4. 3) I Lix (t i )=1, 

i=O m 

wh~re Pm is the truncation operator defined in (1.10). In what 

follows the finite Chebyshev polynomial series (4. 1) satisfying 

(4. 2) and (4. 3) is called Chebyshev approximation of order m. 

In the present paper we shall prove the following three main 

theorems. 

Theorem 4.1 Suppose that there exists an isolated 

solution x=i(t) of the boundary value problem (0. 1) and (0. 2) 

lying in D for any tEJ. Then for some sufficiently large rna there 

exists a Chebyshev approximation x=xm(t) of any order m~mO such 

that 

uniformly on the interval J as m~. 

Theorem 4.2 The Chebyshev approximation x=im(t) stated 

in Theorem 4.1 is determined uniquely in a sufficiently small 

neighborhood of the solution x=i(t) provided that the order m of 

the Chebyshev approximation x=im(t) is sufficiently high. 

Theorem 4.3 Assume that the boundary value problem (0. 1) 

and (0. 2) has an approximate solution x=i(t), for which there are 

a positive constant 6, a nonnegat~ve constan~ K<l and the matrices 

A(t) and B(t,s) continuous of t on the +nterval J and of (t,s) on 

the domain S respectively such that 



(4. 4) 

N 
(1) G= ~ LiR(ti,-l) is nonsingular 

i=O 

(2) u={xll\x-x(t)l\~o for some tE JKn 

U~(t;x)-A(t)II~K/2Ml for any tEJ and any XEC(J ,U) 

(4) I\qr(t,S;X)-B(t,S)I\~K/4Ml for any (t,s)E-S and 

for any XEC(J,U) 

Here R(t,s) is the resolvent matrix with respect to the matrices 

A(t) and B(t,s). ~(t;x) and qr(t,Sjx) are the functions defined in 

(3. 2) by use of the Jacobian matrices of the functions f(t,x,y) 

and g(t,s,x). Ml and M2 are constants satisfying 

(4. 5) 

respectively, where H is the H-mapping with respect to A(t), 

B(t,s) and L1 (i=0,1, ••••• ,N). rand E are constants satisfying the 

inequalities 

(4. 6) 

and 

(4. 7) 

\I~tX(t)-f(t'X(t),Jt g(t,s,x(s»ds)ll~r for any tEJ 
-1 

Then there exists uniquely an exact solution x=~(t) of the 

boundary value problem (0. 1) and (0. 2) lying in U for any t~J. 

Moreover this is'an isolated solution and it holds that 

(4. 8) 

The proof of these theorems are gi·ven later in the present 

paper. 

49 



The coefficients a=(aO,a1 ,·····,am) of our desired Chebyshev 

approximations x=x (t) in (4. 1) of order m are determined by the m 

equations (4. 2) and (4. 3) if x (t) lies in D for any tEJ. The m 

equations (4. 2) and (4. 3) are equivalent to the system of 

nonlinear algebraic equations 

(4. 9) 

where 

(4.10) 

and 

(4.11) 

N 
FO(a)= L Lix (t i )-1 

i=O m 

m-l 
= L e F +l(a)T (t), 

n=O n n n 

which implies by the expressions (1. 4) and (1. 9) 

(4.12) 1 JI Jt F (a)=~ 1 [f(t,x (t), g(t,s,x (s»ds)Tn l(t) on 1T n- m m-
-1 -1 

00 

x(1_t 2 )-1/2]dt_l2e -1 L (n+2P-2)an+2p_2 
n p=l 

for n=1,2,·····,m. The system (4. 9) is called determining equations 

of Chebyshev approximations. For a solution ;=(io,i1 ,·····,im) of 

th~ system (4. 9) the finite Chebyshev polyn9mial series 

m x (t)= Lei T (t) 
m n=O n n n 

is a Chebyshev approximation of order m~ 
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5. Inequalities for Determining Equations 

Suppose that x=~(t) is an isolated solution of the boundary 

value problem (0. 1) and (0. 2) lying in D for any tEJ. There 

exists a positive constant 0 such that 

(5.1 ) u={xIJlx-~(t)l\<o for some t~J}CD. 

Denote that ~ =p ~. It follows from the inequalities (l.ll)-(l.l~) m m 
that 

(5. 2) 

(5. 3) 

(5. 4) 

(5. 5) 

1\ ~m -iItC<Kl a (m) /m(m-l) , 

Iljtm-iYQ~Kl/(m+l)m(m-l) 

II ~tim-~tinc<Kl [(m+2)/m(m-l)+a(m+l)/(m+l) ] 

\I ~t~m - ~t jtllQ<Kl [{m+2/ I2m(m-l) +1/ (m+2) (m+l) ], 

where Kl is a constant satisfying 

d 3 d 2 ft tl-3xI\Q=II~f(t ,i(t), get ,s ,i(s) )ds )I\Q~Kl' 
dt dt -1 

(5. 6) 

Kl may depend only on the structure of the given system (0. 1). 

Hereafter we denote by K's the constants depending only on the 

str~cture of the given system (0. 1). 

In order to determine a domain where the function F(m)(a) 

of the system (4. 9) of determining equations is well defined, we 

choose the number ml su~ficiently large such that 

(5. 7) Kla(m)/m(m-l)<o for any m>ml' 

This is possible by the properties (1.15) of the constant a(m). 

Then it ~ollows from the inequalities (5. 2) and (5. 7) that 

i (t )EUeD 
m 

for any teJ. 
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Let us put 

m 
(5. 8) ~ (t)=(P ~)(t)= I eaT (t) 

m m n=O n n n 

and 

(5. 9) &=(A §. ••••• §. ) 
<:1 0 , l' , m • 

Define the domain 

(5.10) 

The domain nm is the desired domain where the function F(m)(a) is 

well defined. In fact, if we put for any vector a=(aO,al,·····,am) 

belouging to the domain nm 

then we obtain 

x (t )EUCD m 

since for any tEJ 

for any teJ 

II xm (t )-~ (t)1l < \lxm (t )-~m (t)\I + lI~m (t) -i (t)1I 

< 12m+ 1 Ua-& \\ + lI~m -~ llc 

</2m+l[o-Kl o(m)/m(rn-l)]112m+l+Kl o(m)/m(m-l)=O 

by the inequa11ttes (5, 2) and (1. 7). Therefore it follows from 

the expression (4.10) and (4.12) that the function F(m)(a) is 

continuously differentiable of a on the domain nm. 

(m) ) Let Jm(a) be the Jacobian matrix of the function F .. (a. Tc 

investigate the properties of the matrix Jm(a), we consider a 

system of linear equations of the form 
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(5.11) Jm(a)~+y=O, 

where a=(a a ••••• a )EQ 
0' l' 'm m' 

Let us put that 

m m-1 
y(t)= Leu T (t) and h(t)=L e c +IT (t). 

n=O n n n n=O n n n 

Then we can prove that the system (5.11) is equivalent to the 

boundary value problem 

(5.12) 

and 

ddty(t)=P l[~(t;x )y(t)+ft V(t,s;x )y(s)ds]+h(t), 
m- m ~1 m 

where ~(t;x) and V(t,Sjx) are the functions defined in (3. 1) 

a.nd (3. 2). 

Substitutinu ~ (t) into x (t) in the equations (5.13), 
P m m 

equivalently doing a into a in the system (5.11), we obtain 

(5.14) 

where 

(5.15) 

d . ft dty(t)=~(tj~)y(t)+ ~(t,s;~)y(s)ds+h(t)+p(t), 
-] 

P(t)=-(I-Pm_1)[~(t;~)y(t)+Jt V(t,s;~)y(s)ds] 
-1 

-P l{[~(t;~)-~(t;~ )]y(t)+f t [V(t,s;~)-~(t,s;t J]y(s)ds}. 
m- m -1 m , 
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Let ~(t,s) be the resolvent matrix with respect to the 

matrices ~(t;~) and ~(t,s;~). The matrix 

is nonsingular from the isolatedness of the solution x=~(t). 

Then, applying Lemma 2.3 for the boundary value problem (5.12) 

and (5.14), we have 

J
l 

'" A-I A y(t)=-R(t,-l)G co+ H(t,s)[h(s)+p(s)]ds, 
-1 

A 
where H(t,s) is the Green function with respect to the matrices 

~(t;~), ~(t,s;~) and Li (i=O,l,····· ,N),. Denote by H the H-mapping 

eith respect to the above matrices. This implies that 

(5.16) 

where 

On the other hand for the function (5.15) we have 

+I\[~(t;~)-~(t;im)]y(t) 

+f:1['¥(t,S;l!:)-'¥(t,S;ll:m)]Y(S)ds Il Q 

by the inequality (1.12) and the Parseval' s, equality (1. 5). 

Moreover us1ng Schwartz's inequality and a mean value theorem, 

we obtain 
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and 

· d Jt n dt [4> (t ;~)y(t)+ '1' (t, s ;i)y(s )ds J1\ Q 
-1 

~1I~t4>(t;~)y(t)IIQ 

+"4>(t;~){Pm_1[~(t;~m)y(t)+Jt '1'(t,s;~m)Y(S)dSJ+h(t)}UQ 
-1 

Jt a 
+\1 '1' (t ,t ; X') y (t ) tat 'l' (t ,s ; i. ) y (s) dsll Q 

-1 

II [4> (t; ~) -4> (t ; ~m) Jy (t) + Jt ['1' (t ,s; ~) -'1' (t ,s; ~m) Jy < s) ds{\ Q 
-1 

Then for the inequality (5.16) we have 

Il y\\ ~M1\1 coli + IU-' ItQ (1 +01 (m-1) K3) II h\l Q 

+URIIQ[K201(m-1)+K4o(m)/m(m-1)]UY"Q 

using the inequality (5. 2). If we choose a number m2~ml 

sufficiently large, then we have for any m>m2 

(5.17) 

where M 1s a gonstant independent of m. The inequality (5.17) is 

equivalent to the inequality 
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(5.18) 

by the Parseval's eqiality (1. 7) for the finite Chebyshev 

polynomial series yet) and h(t). From the inequality (5.18) and 

the relation (5.11) it readily follows that for anym~m2 

(5.19) 

and 

(5.20) 

The inequality (5.20) will play an impotantrole in the proof o~ 

Theorem 4.1. 

Let 

a. ' = ( a' a' ••••• a') and a" = ( a" a" ••••• a") 0' l' , m 0' l' , m 

be arbitrary vectors be J 0nging to the domain Om. For any vector 

~=(UOJU'J·····Jum) we consider the systems of linear equations 

(5.2~) 

where 

Let us put 

m ITI 

x'(t)= r e a'T (t), x"(t)= r e a"T (t) 
m n=O n n n m n=O n n n " 

m m 
h' (t) = r e c' T (t) and h" ( t ) = r e c" T ( t ) . 

n=O n n+l n n=O n n+l n 
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Then, corresponding to the systems (5.21), we have 

(5.22) 

and 

(5.23) 

N 
L L yet )=-c' 

i=O i i 0 

~ty(t)=Pm_1[~(t;X~)y(t)+Jt ~(t,s;x~)Y(S)dS]+h'(t) 
-1 

N 
L L yet )=-c" 

i=O i i 0 

d Jt dty(t)=Pm_1[~(t;x~)y(t)+ ~(t,s;x~)Y(S)dsJ+h"(t) 
-1 

respectively by the definition of Jm(a). From (5.22) and (5.23 1 

it read~ly follows that 

(5.24) c'=c" o 0 

and 

(5.25) h'(t)-h"(t)=-P l{[~(t;x')-~(t;x")]y(t) m- m m 

t 
+J [~(t,s;x')-~(t,s;x")]y(s)ds}. 

-1 m. m 

The relation above implies that 

II h' -h"\1 Q~K511 x~ -x~1I c lIy \I Q. 

Then by the relation (1. 7) and (5.24) we obtain 

II y' -y"l! ~K4/2m+1I1a' -a"lln E;; \I, 

which implies ,from the systems (5,21) that for an~ m~~ and any 

a' a"en , m 

(5.26) 
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The inequality (5.26) will also play an impotant role in the 

proof of Theorem 4.1. 

6. Proof of Theorem 4.1 

Suppose that there exists an isolated solution x=i(t) of the 

boundary value problem (0. 1) and (0. 2) lying in D for any t~J. 

It is concluded that in the previous section 5 that there exists 

a positive constant 0 satisfying the relation (5. 1) and a number 

m2 sufficiently large such that for any m>m2 the inequalities 

(5. 2)-(5. 5) hold and such that the function F(m)(a) of the 

determining equations (4. 9) is continuously differentiable of a 

in the domain ~m and its Jacobian matrix Jm(a) has the inverse 

J~l(a) at a=& satisfying the inequality (5.20) and satisfies the 

inequality (5.26), where i , ~ and ~ are defined in the formula m m 

(5. 8), (5. 9) and (5.10) respectively. 

Let us put 

(6. 1) 

and 

(6. 2) d It dt ~ (t)-P l[f(t,~ (t), g(t,s,~ (s»ds]=h(t). m m-· m m -1 

Using the inequality (5. 2), we have for the relation (6. 1) 

(6. 3) 
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We rewrite the equation (6. 2) in the form 

d d h(t)={--i (t)---i(t)} dt m dt 

+(I-Pm_l)[f(t,~(t),J:lg(t,s,2(S»dS)] 

-p l[f(t,i (t),f t g(t,s,i (s»ds) 
m- m -1 m 

-f(t,i(t),Jt g(t,s,i(s»ds)] 
-1 

using the fact that x=i(t) is a solution of the equations (0. 1). 

Then by the inequalities (5. 5), (1.12), (1. 5) and (5. 3) and a 

mean value theorem used in (3.12) we obtain 

(6. 4) II hll~Kl [/m+2/12m(m-l )+1/ (m+2) (m+l)] 

+K1 /m(m-l)+K6Kl /(m+l)m(m-l). 

It follows from the inequalities (6. 3) and (6. 4) that 

(6. 5) 

By the definition of the function F(m)(a) of the determining 

equations (4. 9) the boundary value problem (6. 1) and (6. 2) is 

equivalent to a system 

F(m) (Il)=p (m) . 

This implies that 

Then there exists s number m~m2 such that for any m~m3 
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(6. 6) 

for some constant K7 by the asymptotic behavior (6. 5). 

We shall apply Lemma 0.1 in the section 0 to the determining 

equations (4. 9) to' complete the proof of Theorem 4.1. In order 

to check the conditions (0. 8) in Lemma 0.1 we choose an arbitrary 

nonnegative constant K<l and put 

where constants K5 , M and Kl are defined in (5.26), (5.20) and 

(5. ,6) respectively. There exists a number m4~m3 so that 

[M/(1-K)JK7m- 3/ 2<ol/12m+l 

for any m>m4 since 

m- 3/ 2/2m+l=O(m- l / 2 ) as m~. 

If we choose a number om such that 

(6. 7) 

then we obtain 

(6. 8) n.r = {a 11\ a-lilt < ° }( n . 
u = m m rn 

In fact, for any aEn o and m~m4~m3 
m 

t!a-lil\<om<olI12m+l 

<[o-K1a(m3 )/m3(m3-1)JI12m+l 

~[o-Kla(m)/m(m-l)J/12m+l, 

which implies afO 
rn 
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Moreover it follows from the inequality (5.26) that 

(6. 9) HJm (a) -Jm (&)\1 <K5 /2m+l l\a-&" 

<K5/2m+lo~K5°l~K5(K/K5M)=K/M 

for any aEQo and any m~m4. Finally by the inequalities (6. 6) and 
m 

(6. 7) we have 

Thus the inequalities (6. 8), (6. 9) and (6.10) show that the 

conditions (0. 8) in Lemma 0.1 are fulfilled. Hence by Lemma 0.1 

we see that the determining equations (4. 9) has one and only one 

solution a=; in the domain no satisfying 
m 

and 

(6.11) 

If. we put 

and 

m x (t)= 1 eaT (t), 
m ncO n n n 

then x=x (t) is i Chebyshev approximation and satisfies. m 

(6.12) 
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for any m~m4 fr.9m.the inequalities (1. 7) and (6.11). The 

inequality (6.12) implies the uniform convergence of the Chebyshev 

approximation x (t) to the solution i(t). 
m 

. In order to prove the uniform convergence of the derivatives 

of the Chebyshev approximations xm(t), we have 

(6.13) ~tXm(t)-~t~(t) 

=-(I-Pm_l)[f(t,~(t),Jt g(t,s,~(s»ds)] 
-1 

-f(t,~(t),Jt g(t,s,i(s»ds)]. 
-1 

On the other hand~ by the inequalities (1.11) and (1.12), we have 

It 
II(I-Pm_l)[f(t,~(t), g(t,s,~(s»ds)]\lc 

-1 

~K1C1(m-1)/(m-1) 

and by the inequalities (1. 5), (1. 7), (5. 3) and (6.11) we have 

lip l[f(t,x (t),I t g(t,s,x (s»ds) 
m- m -1 m 

-f(t,~Ct),It g(t,s,~(S»dS)]"c 
-1 

<';2(m-l)+lK6nxm-~IlQ<K6';2m-l{lIxm-~mUQ+lI~ni-~IIQ} 

<K612m-l{[M/(1-K)]K7m-3/2+Kl/(m+1)mCm-1)}. 

Then for the relation (6.13) we have 
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ll~tXm-~tjtllc=o(m-1) as m-+oo, 

which implies the uniform convergence of the derivatives ~tXm(t) 

d to dtx(t). 

This completes the proof of Theorem 4.1. 

7. Proof of Theorem 4.2 

Let x=i(t) be an isolated solution of the boundary value 

problem (0. 1) and (0. 2) lying in D for any tEJ. There exists a 

positive constant 0 satisfying (5. 1). We choose an arbitrary 

constant E satisfying O<E~O. Then there exists a number mO suel! 

that for any m>mO 

(7. 1) °l(m-l)=l/m<E. 

Suppose that for any m~mO there are two Chebyshev 

approximations 

satisfying 

(.7. 2) 

We denote that 

uE={xlllx-~(t)l\~E for some tE:J}CU:::D. 

Then it follows that for any m>mo x (t) and x'(t) be:ong to the m m 
domain UE for any tEJ. Let us put 

y(t)=x (t)-x'(t). m m 
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By the definition 'of Chebyshev'lappro.~.1l'nati.ons· .:we.'_'.have 

and 

(7. 4) 

t 
-f(t,x~(t),I g(t,s,x~(S»ds)J. 

-1 

We rewrite the above equations (7. 4) in the form 

(7. 5) 

where 

and 

~ty(t)=~(t;~)y(t)+It ~(t,s;~)y(s)ds+h(t), 
-1 

h(t)=-(I-Pm_1)[~(t;~)y(t)+Jt ~(t,s;~)y(s)ds] 
-1 

Jt 6 
+ [~(t,s;x )-~(t,s;~)Jy(s)ds}d6, 

-1 m 

X6 (t)=Xm'(t)+6[X (t)-x'(t)]. m m m 

-6 Noting that xm(t)~Ue for any tEJ and 66[0,1), we obtain, by the 

same-argument as that used in proceeding from (5.16) to (5.17), 

(7. 6) 

from (7. 1) and (7. 2). 
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On the other hand, applying Lemma 2.3 to the bounda:ry value 

problem (7. 5) and (7. 3), we obtain 

Jl A 

y(t)= H(t,s~~(s)ds, 
-1 

"'-where H(t,s) is the Green function with :respect to the matrices 

~(t;f), ~(t,s;~~ and Li(i=O,l, ••••• ,N). Then it follows from 

(7. 6) that 

(7. 7) 

Since E is arbitrary, the above inequality (7. 7) implies that 

that is 

y(t)=o for any teJ 

by the Parseval's equality for the finite Chebyshev polynomial 

series yet). 

This proves the uniqueness of Chebyshev approximations and 

hence completes the proof of Theorem 4.2. 

8. Proof of Theorem 4.3 

For the given approximate solution x=x(t) of the boundary 

value problem (0. 1) and (0. 2) we put 

(8. 1) - Jt ~ t x (t ) = f (t , x (t ) , g ( t , s , X ( s ) ) ds ) +q '( t ) 
-1 

and 
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(8. 2) 

Introducing the matrices A(t) and B(t~s), we rewrite the equations 

(8 .1) in the form 

(8. ,3) ~tX(t)=A(t)X(t)+It B(t,s)x(s)ds+h(t;x)+q(t). 
-1 

Here we denote that 

h(t;X)=f(t,X(t),It g(t,s,x(s»ds) 
-1 

-A(t)X(t)-f t B(t,s)x(s)ds 
-1 

for any x=x(t)EC(J;D). Applying Lemma 2.3 to the boundary value 

problem (8. 3) and (8. 2), we have 

X(t)=R(t,-1)G-11 f +J l H(t,s)[h(s;x)+q(s)]ds, 
-1 

(8. 4) 

where H(t,s) is the Green function with respect to the matrices 

A(t), B(t,s) and Lt(i=O,l,.··.·,N). 

To seek an exact solution of the system (0. 1) satisfying 

the boundary condition (0. 2), we consider the iterative process 

1 II x +l(t)=R(t,-l)G- 1+ H(t,s)h(s;x )ds 
n -1 n 

(8. 5) (n=O,l,·····) 

For the iterative process (8. 5) we shall prove that it can be 

continued infinitely in the space C(J;D) and that 
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(8. 6) 

and 

(8. 7) 

for n=O,l,·····. In fact, for n=O the inequality (8. 6) isev1dent. 

Since 

Xl(t)-XO(t)=R(t,-l)G-l(t-t')-f l H(t,s)q(s)ds, 
-1 

then by the assumptions of the theorem we obtain 

\lxl-xOllc<M2€:+Mlr, 

which implies by the condition (5) in (4. 4) 

\~l-xO"C«l-K)B<B. 

This proves (8. 7) for n=O. To prove our statement by induction, 

let us suppose that the iterative process (8. 5) has been 

continued up to n-l and we have obtained (8. 6) and (8. 7) up to 

n-l. Then by the inequality (8. 7) for n-l we can make xn+l(t) 

and from (8. 5) we have 

(8. 8) 

where 

h(t·x )-h(t·x ) , n ' n-l 

-f(t,x l(t),J t g(t,s,x l(s»dS) n- n--1 

-A(t)[Xn(t)-Xn_l(t)]-f t B(t,s)[xn(s)-Xn_l(s)]ds. 
-1 
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Moreover, by a mean value theorem we obtain 

h(t;x )-h(t;x 1) n n-

II 8 It 8 = {~(t;x )[x (t)-x l(t)]+ ~(t,s;x )[x (s)-x 1(S)ds}d8 n n n- n n n-O -1 

It . 
-A(t)[x (t)-x l(t)]- B(t,s)[x (s)-x l(s)]ds, 

n n- -1 n n-

where 

x8 (t)=x 1(t)+8[X (t)-x l(t)]~C(J;D). n n- n n-

It follows that 

I\h(t;x )-h(t;x 1)11 n n-

It II 8 + 1I~(t,s;x )-B(t,s)llllx (s)-x 1(s)lld8dS. 
_IOn n n-

Hence for the relation (8. 8) we have 

II xn -xn_l Uc< IIH lIcllh (t; xn ) -h (t ; xn_l)\l C 

~Ml (K/2Ml +2K/4Ml ) IIxn -xn_lU C=K IIxn-xn_ll\ C 

by the assumption (3) and (4) in (4. 4) of the theorem. This 

implies (8. 6) by the assumption of the indu.c.tion and 

(8. 9) IIxn+l-XoUC~(Kn+Kn-l+ ••••• +K+l)lIxl-Xolic 

< (M2E+Ml r) / (l-K )~O. 

This completes the induction and hence we see that the iterative 

process (8. 5) can be continued infinitely and satisfies 

inequalities (8. 6) and (8. 7) for every n. 
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By the inequalities (8. 6) and (8. 7) we see that the sequence 

{Xn(t)}~C(J;D) obtained by the iterative process (8. 5) converges 

uniformly to a function i(t)EC(JjD). It readily follows from (8. 9) 

and (8. 5) that 

\\ i-x I\c~(M2E+Mlr) / (l-K )~o 

and 

i(t)=R(t,-l)G-l~+fl H(t,s)h(sji)ds. 
-1 

(8.10) 

The equation (8.10) implies by Lemma 2.3 that 

and 

~ti(t)=A(t)i(t)+ft B(t,s)i(s)ds+h(tji) 
-1 

=f(t,i(t),f t g(t,s,i(s»ds). 
-1 

Therefore the function i(t) is a solution of the boundary value 

problem (0. 1) and (0. 2) belonging to the space C(JjU). 

In order to prove the uniqueness of the solution of our 

boundary vR1ue problem, we consider another solution x=i'(t) of 

the problem (0. 1) and (0. 2) belonging to the space C(JjU). Then 

N 
(8.11) L L it(t )=~ 

i=O i i 

and 
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(8.12) ~t~'(t)=f(t,i'(t),Jt g(t,s,~'(s»ds) 
-1 

=A(t)~'(t)+Jt B(t,s)~'(s)ds+h(t;i'). 
-1 

Equivalently the relations (8.11) and (8.1~) imply that 

(8.13) ~'(t)=R(t,-l)G-l!+Jl H(t,s)h(s;i')ds. 
. -1 

Subtracting (8.13) from (8.10), we obtain 

IIx-x' Ilc~K\lX-X" l\c' 

which implh~s 

1\ x-x' Uc=O. 

This proves the uniqueness of the solution of the problem (0. 1) 

and (0. 2) lying in U for any tEJ. 

In order to prove the isolatedness of the solution x=i(t), 

it is enough to see that the matrix 

L'>. 
is nonsingular, where R(t,s) is the resolvent matrix with respect 

to the matrices ~(t;i) and ~(t,s;~). Suppose that ~ is singular. 

Then there exists a nontrivial vector c such that 
r:
Gc=O. 

For such c let us put 
"'-y(t)=R(t,-l)c. 

Then y=y(t) is a nontrivial solution of the boundary value problem 
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of the form 

C8.14) 

and 

(8.15) d ft dty(t)=~(t;~)yCt)+ ~(t,s;~)y(s)ds 
-1 

=A(t)y(t)+f t BCt,s)y(s)ds 
-1 

+[~(t;~)-A(t)]YCt)+Jt [~(t,s;~)-B(t,s)]y(s)ds. 
-1 

Applying Lemma 2.3 to the problem (8.14) and (8.15), we obtain 

y(t)=f1 H(t,s){[~(s;i)-A(s)]y(s) 
-1 

+Js [~(s,u;i)-BCs,u)]y(u)du}ds. 
-1 

Then, by the assumption", ('3) and (4) in (4. 4), we have 

"YUC~"HUC(K/2Ml+2K/Ml)~Y"C=K"Y"~, 

whicn implies that 

l\y\!c=O. 
D This is contradiction. Hence the matrix G is nonsingular, that 

ls, the solution x=i(t) is isolated. This completes the proof of 

Theorem 4.3. 
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The Buckling of Plates by the Mixed Finite Element Method 

By 

* Kazuo ISHIHARA 

1. Introduction 

We shall consider the mixed finite element approximation applied 

to the buckling problem of the thin plate with the clamped boundary 

condition: 

(1) 

2 a2u 
I::.l::.u + A L ,. ij = ° 

i,j=l axiax j 
in n, 

u = au/av = ° on an. 

Here n is a bounded convex domain in the x l x 2-plane with boundary 

an consisting of a finite number of smooth arcs, I::. is the Laplace 

operator,a/av is the outward normal derivative along an, and Tij 

(i,j=1,2) are given smooth functions such that 

+ + 

The buckling of the plate is possible only for certain definite values 

of A. The minimum of these values determines the critical buckling 

load. The associated buckling configuration is the function u corres-

ponding to the buckling load A. A simple case is buckling under pure 

* Department of Mathematics, Faculity of Science, Ehime University, 
Matsuyama 790, Japan. 
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compression 

6.6.U + A6.U = O. 

The aim of this paper is to give the rates of convergence for 

the finite element approximate solutions of the eigenvalues and the 

eigenfunctions, by applying the mixed method with piecewise linear 

polynomials proposed by Miyoshi [5J,[6J. 

2. Notations and weak formulation 

Let L?(n) be the real space of square integrable functions on 

n, whose inner product and norm are denoted by ( , ) and U .11, re

spectively. Let Hm(n) be the real m-th order Sobolev space(m=1,2, 

3,···) provided with the' norm 

2 1/2 
luflm = ( L I/Daull) 

lal~m 

Here a=(S,y) is a two-component index with non-negative integers, 

a 
a~x~ lal= S + Y and D = dx~. 

H1Un 
'1 

'llhe spac es and H'-(n) are given by 
0 0 

Hi(n) = {f; f~ Hl (n) , f = 0 on dn}, 0 

H~(n) = {f; fEo H2 (n), f = df/dv = 0 on ()n}. 

Tn orner to deal with the buckling problem (1) in a weak form, 

let us define bilinear forms < ,> and [, J by 

~u,v> = L (Dau,Dav)} 
lal =2 

2 
[u,yJ = L (T ij ()u/()x i ,3v/()xj ). 

i ,j=l 
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We assume that 

[u,uJ:2=O 

and that the norm 1/1'111 induced by [,] is equivalent to the norm 

8'll l in H~(g). The standard weak form of (1) consists of finding a 

real eigenvalue A and a non-zero eigenfunction u E: H~ (n) defined by 

<u,<P> = A[u,<PJ for each <pE-H6(n). 

It is well known tha~ all the eigenvalues {Ai} are arranged as 

0'< Al ~ A2~ ••• <00. 

The multiplicity of each eigenvalue is always finite. The correspond

ing eigenfunctions are denoted by {ui } with the normalization con

dition 

where 0ij is Kronecker's delta. It is also well known that the eigen-
00 

functions {ui}i=l belong to the space 

sufficiently smooth and that 

H~(n)(\H4(n) when an 

belong to H~(n)nH3(n) 

is 

when 

n 1s a convex polygon! From the Rayleigh principle the eigenvalues 

are characterized by 

<u,u> 
Ai = min i=1,2,···, 

2 [u,u] 
u Eo HO (n) 

u:\:O 
[u,uj]=O 

j=l, ... ,i-l 

and the minimum is attained by u i • 

In order to construct the mixed finite element scheme, we intro-

duce another formulation: Find 

such that 
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2 
L [(au/axi,a~ij/axj) + (Uij'~i~)J = 0 

i,j=l .J 

for each ~ijE H1 (n) (~12=~21)' 
2 2 

(2) 

L (aUij/aXj,a~/axi) - A( L TijUij'~) = 0 
i,j=l .. i,j=l 

1 for each ~E- Ho(n). 

We assume that· u~H~(n)"H3(s'n. The solution (u,Ull,U12'U21,U22) of 

(2) is related by 

1~i,j:!:2. 

We define a space V by 

V = {(u,U11'U12'U21,U22)~H~(n)XH1(n)XH1(n) XH1 (n)XH1 (n); 

U12=U21 , i~j[(au/aXi,a~ij/aXj) + (Uij'~ij)J = 0 

1 
for each ~ij E-H (n) (~12=~21)}' 

and a bilinear form E(U,W) by 

E(U,W) = (U11 ,W11 ) + (U12 ,W12 ) + (U21 ,W21 ) + (U22 ,W22 ) 

where U = (U11,U12,U21,U22)' W ~ (W11,W12,W21,W2?)' The eigenvalues 

are characterized by 

A = i 
min 

{u,U}4:V 
u+O 

[u,u.jJ=O 
j=l,··,i-1 

E(U,U) 

III ull' 2 i=1,2, ... , 

3. Convergence of the finite element scheme 

For simplicity, we assume that the domain n is a convex polygon. 

Then the eigenfunction u belongs to ~~(n)('\H3(n). The domain is' 
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decomposed into disjoint triangular elements in the usual manner. Let 

Pi,l~i~n (or Pi,n+l~i~n+J) be the nodal points of the triangula

tion Th which belong to n (or an). Here h is the largest side 

length of all the triangular elements. It is also assume~ that the 

triangulation Th is uniform in the interior of n in the sense of 

Miyoshi ([5J,[6J). Let {~i}(i=1,2, ••• ,n+J) be the piecewise linear 

functions such that 

A 
<l>i(P,i) = 0i,1' 1 ~ i,j ~ n+J . 

Let ~h be the subspace of Hl(n) r,. r..} spanned by {<I>l,···,<I>n+J and 

be the subspace of H~(n) 
/,,,,1' I' A 

We now define the mixed finite element solution CA,u,Ull,U12,U21' 

'" '" h '" h'" 1\ U22 )(u ~ YO' Uij E- Y , U12=U21 ) of the consistent mass scheme for the 

problem (2) by 

We define a space vh by 
h ;to A A /\ /\ h h h h h 

V = {(u,Ull'U12'U21'U22) ,"Yo xy J( Y )( Y )( Y . 

11 



By (3) and (4), we can obtain a set of the matrix equations 

Kx '+ My: 0, 
tv ~ 
Ky + XGx = 0, 

where K and r are elastic stiffness matrices, G is the geometric 

stiffness matrix, and M is the consistent mass matrix. The eigeh-

values {1 } n of (3) are arranged a8 
. i i=l 

O<~1~1?~ ... ~1n· 
~ ~i ~ Ai Ai Ai Ai 

The corresponding eigenfunctions (ui,U )=(ui,Ull'U12'U21,U22) (i=1,2, 

... ,n) can be normalized by 

" 1\ " [ui,ujJ = <5 ij , [ui,uiJ~O. 

Then the eigenvalues are characterized by 

l' i = "min h 
(~,U)E- V 

u:\=O 
[G,o.jJ=O 

j=l,···,i-l 

, 

" "i and the minimum is attained by (ui,U ). 

i=1,2,···,n, 

Consider the static plate bending problem with the clamped boundary 

condition: 

66w = l' in St, 

w = dWjdV = 0 011 aQ. 

Here f is a given function belonging to 1 2 (Q). Miyoshi proved the 

following proposition ([5J,[6J). 

Proposition 1. Let w A /\ '" t\ 
be the solution of (5) and (w,Wll,W12,W2l' 

W ) • yh X. yh X. yh X yh X yl1 
22 0 

" A (W12=W21 ) be the finite element solution 

defined by 

78 



= 0 

(6) 
2 A A A l (aWij/aXj,a$/axi ) + (f,$) = 0 

i,j=l 
for each ~ Eo yh . 

Then 

rl w - ~lIl ~ C UfU h l / 2 , 

where C is a constant independent of h. 

We can now obtain the following results using Proposition 1. The 

proof will be published elsewhere. 

Theorem 1. Let 1 i · be the approximate eigenvalue of Ai. Then 

for sufficiently small h, there exists a constant C1 which is in

dependent of h such that 

I Ai - ~i I ~ Cl h l / 2 . 

Theorem 2. Let Ai be of multiplicity p+l (p%O, Ai _l < Ai ="'= 

Ai+p<Ai+p+l)' and ui,···,ui+p'be the corresponding eigenfunctions. 
A' A 

Let uk be the approximate eigenfunction corresponding to Ak (k=1,2, 

... ,n). Then fur sufficiently small h, there exists a constant C2 

which is independent of h such that 

where 

dist{u, B} = inf Illu - bOl. 
bEB 

As a corollary to Theorem 2, we have 
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Corollary 1. If Ai is a simple eigenvalue, then for sufficiently 

small h there exists a c~nstant C3 which is independent of h such 

tbat 

Remark. Furthermore, we can propose the generalized mixed mass 

scheme with a parameter a, 0~a~1([2J) 

Kx + {aM + (l-a)Ml}y = 0, 
"'" ,.., 
Ky + AGx = 0, 

where Ml is the diagonal lumped mass matrix. The error estimate of 

the above scheme is similar to the one of the consistent mass scheme. 

4. Numerical example 

To show the validity of the theoretical results, we deal with the 

following example of the square plate, which is the same as the one 

given by Weinstein and Stenger ([7J, p193). 

Example .. H: 

tllm + >'tlu = 0 in Q, 

u = aU/dv _. 0 on an. 

Although the exact first eigenva:ue (buckling ioad) Al is not known, 

they obtained the inequality 

5.30362:S Al~ 5.31173. 

We divide n into n X n uniform mesh as shown in Figure 1. Our 

choices for the parameter e are 0, 0.5, 1. Table 1 shows the 
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numerical results, from which we can see that the approximate first 

eigenvalues converge as h tends to zero. All numerical computations 

were performed on the FACOM 230-28 computer at Ehime University, and 

the FACOM 230-75 comp~ter at Kyushu University. 

Figure 1. Mesh pattern (3 X 3) 

Table 1. The results for Example 

mesh(n X n) 7x7 8X8 9X 9 10)< 10 

h J2rr/6 [2rr/7 [2rr/8 [27T/9 

0 4.82007 4.94137 5.02223 5.07883 
e 0.5 5.45497 5.42827 5.40559 5.38766 

1 6.31138 6.03642 5.86073 5.74163 
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