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On a Mixed Finite Element Scheme for Buckling Analysis of Plates

*
Fumio_KIKUCHI

1. Introduction

Our problem is expressed by the buckling equation of clamped

plates
2 2 2 L
AbL%u + ) T4:37u/3x 9%, = 0 in @,
i,j=1 *J )
(1)
u = 93%u/on = 0 on 3Q,

where Q@ C R2 is a non-obtuse polygonal domain with boundary 3%, A

the Laplace operator, 3/9n differentiation in the outward normal

direction of 3Q, x = (xl,xz) the independent variable of RZ, and

Tij (1<i,j<2) are sufficiently smooth given functions of x such
that
2 .
(2) Ty = Ta1 o jzlarij/axj =0 (i =1,2)

We are interested in a non-trivial function u = u(x) and a (real)
number A that satisfy (1).

In our mixed method, we first decompose (1) into a system

2 A
—Au=v , -AAv+ )V t..3%u/ex.9x. =0 in Q,
RIS %%
i,j=1
(3)
u = 3u/on = 0 on 939,
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and then use appropriate finite element spaces and weak forms for
discretization. This type of mixed method has been proposed by
many investigators, see for example Kikuchi [1], and Ciarlet and
Glowinski [2].

As for the error analysis of the mixed method for the above
eigenvalue problem, we can refer to Ishihara [3], where error esti-
mates of approximate eigenpairs are derived for the piecewise
linear finite element model considered over nearly uniform triangu-
lations. The analysis is based on Miyoshi's results for the mixed
approximation of the corresponding boundary value problems [4].

It also uses the Rayleigh and the min-max principles, and hence its
validity is restricted to equations such as XAZu + Au = 0.

The main objective of this note is to present error analysis
of the above mixed method applied to more general cases, where the
Rayleigh and the min-max principles are not available, or the employ-
ed meshes are not neceSsarily uniform. We will use the so-called
spectral projection to our end, see for example Grigorieff [5]. We
will also utilize the results obtained by Scholz [6] to obtain order
estimates of errors of approximate eigenpairs. In our analysis,
it is essential to prove a certain compactness property of a family
of approximate operators. The techniques developed in this note
will be available for higher order finite elements, and also for
the different type of mixed models where u itself as well as its
all second order derivatives are considered as independent functions
to be approximated (sé tfor example Miyoshi [4]).

In this note, C will be used as a generic positive constant,

which may take different values when it appears in different places.



2. Preliminaries

We will use the Sobolev spaces Hm(Q) and Hg(ﬂ).equipped with
the same norm || Hm (m = 1,2,...). The inner product and the norm
of L,(?) will be denoted by ( , ) and Il ||, respectively.

The problem (1) expressed in a weak form is to find a pair

{A,u} eRl x H(Z)(Q) such that u # 0 and
(4) A(8u,A8) = b(u,d) for all G &H.(R) ,
where
- .2 -
(5) b(u,u) = . §=1(rijau/axi,au/axj)

Here we have used the relation (2).
Another expression may be given to the same problem, if a weak
form of (3) is employed: find a triplet {k,u,v}ealg'x Hé(n) x HI(Q)

such that u # 0 and
- - V- 1 - - V- 1
(6) (Vu,vww) =(v,v) ( veH (®)), A(VW,Vu)=b(u,u) ( ue€H;(Q)),

where (Vu,vv) for example implies

2
(7) (Vu,vv) = 7§ (au/axi,ai/axi)

i=1
In order to check the equivalence between (4) and (6), notice that the
solution u of (4) is necessarily belongs to H4(Q)'since  is a non-

obtuse polygonal domain, see Mizutani [7]. Then the condition

vVv==Aug@g Hl(Q) in (6) can be easily justified.



3. Finite Element Scheme

We triangulate Q in the usual way. We assume that the consi-
dered triangulation Th for h > 0 is x-regular in the following

sense, see Scholz [6]:

() Te Th is a (closed) triangle, each side of which is either

a portion of 32 or a side of an adjacent triangle in T; .

(ii) there is a fixed constant « > 0 such that two circles K1

and K2 exist with the properties

radius of K1 = h/k , radius of K2 = kh ,

and KICT C K2 for all T & Th.

In the sequel, we will only consider a k-regular family of triangu-

lations {Th} with a fixed « > 0, and the case when h + 0.

Let Xh = Xh(Th) be the space of continuous functions which are

linear polynomials in each T & Th. Then Xh is a finite dimension-
al subspace of Hl(Q). We also use the space Xg of all functions in

Xh that vanish on 99, that is, Xg = th\ Hé(ﬂ).

Using the above two finite element spaces Xh and Xg, we can
introduce a mixed finite element approximation to (6): find a triplet

{Ah,uh,vh} (= Rl X Xh X Xh‘such that uh # 0 and

0
(Vuy,9v,) = () (v e XY,
(8)
A (Vv, ,Vu, ) = b(u_,u.) (Vﬁ exh)
h*''h’'"h h’"h h 0

For each u, € Xg, we can‘define,Ahuh = Xh by the relation



(9) (Ahuh,vh) =‘-(Vuh,Vvh) for all v, € Xh .

Then we can rewrite the system of equations (8) into a single one

. 1 h |
for {Ah,uh} € R x xo.
-y - - h
(10) ‘Ah(Ahuh,Ahuh) = b(uh,uh) for all up < XO ,

where Vi has been eliminated by the relation vy = - Ahuh'

4, Properties of Ah

In the space Hg(n), || Au || can be regarded as a norm equiva-
lent to || u ”2’ and hence we have the following properties: Let
{ui}o.lo=1 be a sequence in Hé(n) such that ||Aui || < C for a certain
positive constant C. Then wé can choose a sub-sequence, again

[+

denoted by {ui}1

=1 for simplicity, such that for i » o,
(11) u; > u weakly in Hg(n), and strongly in Hé(n),

where u is a certain element in Hg(ﬂ). We will show that the

operator Ah, when considered over an appropriate family of Xg,

possesses properties in a sense corresponding to the above.

Lemma 1 There exists a positive constant C = C(Q) such that
(12) lu || <c]lvu || <cC?|au || for any u, e XP
hil = LIS h"h cany Uy 0’
1/2
where ||Vuh || = (Vuh,Vuh) /2,



Proof The former part of (12) is nothing but the Poincare inequ-
ality, while the latter is obtained by substituting vy, = uhe Xg c:)(h

and using the Schwarz inequality.in (9). ///

Lemma 2 Let {Th(l)}?=1 be a (k-regular) sequence of triangulations
such that 1lim h(i) = 0. Consider a sequence of functions {uh(i)}:=l
i+ :

such that

(13) uh(i) € x%(i) ’ ||Ah(i)uh(i) |l <Cc ,

where C is a positive constant, and Xg(l) and Ah(i) are the finite
element space Xg and the operator Ah associated with Th(l), respecti-

vely. Then we can choose a subsequence, again denoted by {uh(i)}?=1

for simplicity, such that for i » =

Ah(i)uh(i) + Au weakly in LZ(Q) ,
14

. 1
uh(i) + u strongly in HO(Q) ,
where u is a certain element of H%(Q).

Proof In this proof, we omit the index i, and h - 0 implies i > =.
o

1 Since A u is uniformly bounded in LZ(Q), we can show the exi-

stence of a subsequence, again denoted by {uh}, such that for h - 0

Ahuh > W weakly in LZ(Q) ,

u, *u weakly in Hé(ﬂ) and strongly in LZ(Q) ,



where w and u are certain elements of LZ(Q) and H%(Q), respectively,
and we have used the results of Lemma 1. On the other hand, we can

find for each v g Hl(n) a sequence {Vh} such that
h : .ol
VL € X, and vy, TV strongly in H () as h »> 0.

The existence of such an approximate sequence is assured by the
usual approximation theory, see for example Ciarlet [8]. Taking

the limit of
(Vuh’vvh) = - (Ahuh’vh) ’

we find
(*) (Vu,Vv) = - (w,v) for all v € Hl(Q)

Then we have for h +~ 0

2
I

2
Il vw, 19 = = (8w ,u) » = (wu) = |[vu]l®

from which follows the strong convergence of u, tou in Hé(n).
o

2 Choosing v from Hé(n) in (*), we have
(Vu,vv) = - (w,v) for all v & Hé(n)

Since € is a non-obtuse polygonal domain, we can assure that
ue H(l,(ﬂj N HZ(Q) and Au = w, see Kondrat'ev [9]. Applying the
Green's formula to the left-hand side of (*) yields

ou

- (u,v) + [ vdy = -~ (w,v) for a1l v eH (),
aQn



where dy is the line element on 9. We can now conclude that 3u/9n

= 0 on 9, and hence u & HS(Q). Y///4

5. Fundamental Properties of the Approximate Eigenvalue Problems

As before, we assume that the considered family of triangula-

tions is k-regular. Define o, Oy s and o(e) by

o = set of all eigenvalues for the problem (4),
0, = set of all eigenvalues for the problem (10),

o(e) = (J In-e,avel
A€o

where é is an arbitrary positive number. Clearly o is a bounded
countable subset of R1 without any accumulation points except zero.
In particular, zero is either an eigenvalue of (4) or an accumula-
tion point of o. These properties directly follow from the theory
of compact operators. We can also show that oh is a finite bounded
subset of Rl, the boundedness being uniform with respect to h, as
follows from Lemma 1. Notice that o(e) is an open set.

In the sequel, we will only consider a non-%eéro eigenvalue AO
€ o, which can be fixed arbitrarily. The constants to appear in the

forthcoming lemmas and theorems may differ with AO’ but we will make

no special distinction among them. Define

tn
]

eigenspace for A

0 ’
m = dimension of E; 1 < m < » ,
m . ~ ¢ a
{¢;};-1 = a basis of E such that (A¢i,A¢j) 6ij (L <i,j £m),

where 6ij is the Kronecker delta.



Let K be a positive constant such that

Define

Eh = linear hull of eigenfunctions corresponding to all ei-
genvalues in oy N [AO- K,A0'+K] ,
. . h
m, = dimension of E"; 0 < mo< e,
{$ }mh = a basis of Eh such that each ¢ is an eigenfunction
hi’i=1 " "hi

of (10) and satisfies (Ah¢hi’Ah¢hj) = 6ij (i,j < mh) ,

A\,i = eigenvalue corresponding to ¢,; (i < m)

The following lemmas may be derived from the results established

in the preceding section and by reduction to absurdity.

Lemma 3 For each € > 0, we can find a positive number h; = h,(¢)
such that
(15) o, C o(e) for any h < h0 .

That is, any element of op is close to a certain element of o when h

is sufficiently small.

Proof Fix €9 > 0, and consider the case € < €p° Then there ex-

ists a positive constant L such that

oh (- ['L’L] ’ ‘ 0(5) C ["L)L]



Assume the contrary to (15). Then we can find a sequence

{ o0
‘{Ah(i)’uh(if}ial such that

iﬂ h(i) = 0 , }‘h(i) c oh(i)\o(e) ,

h(i) . . . .
uh(i) (= XO is an eigenfunction of (10) corresponding to
Ah(i) and satisfies I‘Ah(i)uh(i)|| =1 |,

h(i)

where {XO }?=1 is a sequence of finite element spaces associated
with an aﬁpropriate sequence of triangulations {Th(i)}?gl. Hereafter,
we omit the index i, and h » 0 means i + », Since IAhI + HAhuh || is
uniformly bounded, we can apply Lemma 2 to show the existence of a

subsequence, again denoted by{{lh,uhH, such that for h +~ 0

A, > A e r! |

u, >u strongly in Hé(n) ,
Ahuh + Au weakly in LZ(Q) ,
where u is an element of HS(Q). Notice that A belongs to a closed

set [-L,L] \o(e), and in particular A ¢ o(e). On the other hand,

we can find for each u & Hg(ﬂ) an approximate sequence {ﬁh} such

that ﬁh = xg and for h + 0

ﬁh > u strongly in Hé(n) ,

Apuy * du strongly in LZ(Q)

10



Here we have used the results of Scholz [6] to assure the existence
of a sequence strongly convergent in the above sense. Taking the

limit of

Ah(Ahu,A = b(u

we have

A(Au,Al) = b(u,u) for any 1 & Hg(n)

Since A ¢& o, the above relation implies u = 0. Taking the limit of

Al w12 = beu,u,)

h h™h h’"h ’
we have A = b(u,u) = 0. Since A gé o, this means A = 0 is an accu-
mulation point of o. But A also belongs to [-L,L] \o(e), and we have
a contradiction. ///
Lemma 4 We can find a positive constant h0 such that

(16) my <m for any h < h0 .

That is, the dimension of Eh never exceeds that of E when h is suffi-

ciently small.

Proof We only sketch the proof. Assume the contrary to (16).

Then we can find a sequence of triangulations {Th(l)}?=1 such that

lim h(i) = 0 ’ M (i) 2m+ 1 ,

i+oo

11



h h(i)

where mh(i) is the dimension of E" = E h(l).

associated with T
In the sequel, we omit i as in the proof of Lemma 3. We can find a
*
sequence {uh} such that
* m+1 h *
h * j£1aj¢hj e, Mg ll=1,

* -
(Ahuh,Ah¢hj) = 0 for 1 <j <m,

where {¢hj}?21 has been already defined in this siction, and oy for
1 £ j £ m+l are real coefficients. Notice that uy is a linear combi-
nation of,tze first (m+1) functions of {¢hj}?21’ and that we can al-
ways find uy by an appropriate choice of aj. As in the proof of the
preceding lemma, we can choose a suitable subsequence of {uh} to

° *
show the existence of a non-zero function u & HS(Q) such that
[ - * - 2
AO(Au ,Au) = b(u ,u) for all u € HO(Q) R
* * .
(Au ,A¢j) = b(u ,¢j) for 1 <j<m .

Here it is especially to be noted that the eigenvalues associated
with Eh necessarily converge to AO as h ~ 0 due to Lemma 3. The
above relations clearly contradict the fact that E is the eigenspace

for Ao» and the proof is completed. ///

6. Existence and Error Estimation of the Approximate Eigenpairs

In the preceding section, we have established some fundamental
properties of the approximate eigenpairs. This section is devoted
to the proof that there actually exists a nice approximation to each

eigenpair of (4), except that for the zero eigenvalue. Essentially,

12



we will rely upon the standard technique, that is, the use of the
spectral projection. In our description, we will be mainly concerned
with the idea or the outline of analysis.

Let us consider, in the complex plane, a circumference TI' with
its center and direction taken as AO and anticlockwise, respectively.
The radius of T' is fixed so small that there is no element of o,
except AO’ either on or inside I'. Consider the following two problems :

for each A & and f Hé(n), find u Hg(ﬂ) and u, € Xg such that

(A7) A(au,AR) - b, = AJNeE,D) 5 Y @ e HR)
and

- S T vV - h
(18) MApup, 8T - blup i) = ASTB(E, ) Y B e Xy

respectively. For each A €T and f Hé(n), we can show that u
exists uniquely in Hg(n), and that uy also does uniquely in Xg when
h is small enough. These results are derived by the use of theory of
compact operators, or the approximate compactness properties estab-
lished in Lemma 2. Although we have not stated explicitly, we have
considered real functions only. Since XA is a complex number, u and
u, are in general complex-valued functions even for real f, and hence
we are obliged to concern ourselves in complex-valued world. How-
ever, the final results can be again expressed in real-valued world,
as will become clear later.

Now we can define the following two operators for each A & TI:

Q(A) : Hg(R) + HE(Q) ;

(19) QE = u & HZ(Q) of (17) for each £ &« Hi(a) ,

13



Q, (M) :Hy@) > Xp;

(20) Q) = u & XD of (18) for each f & Hy(@) .

It is to be noted that Q(A)f and Qh(x)f (for h small enough) are
uniformly continuous in A & I' for each f, the continuities being
those with respect to the metrics of Hg(ﬂ) and Xg,
Notice also Lemma 5 to be presented later. Define

respectively.

1 2 )
P:Hy() ~ Hy(a) ;

(21) PEf = or IPQ(A)f ar
.yl h |
P, tH(2) » X ;
1
(22) P f = or erh(A)f ar. ,

where f is an arbitrary function in Hé{ﬁ), and i the imaginary unit.

We can show that P is actually a mapping of Hé(Q) into E such that

(23) Pu

L}
c

for any u € E .

On the other hand, P, is a mapping of Hé(ﬂ) into Eh well defined for

h
h small enough, but does not possess the property corresponding to
(23) in the strict sense.

In the following, we will present three lemmas without proofs.
The first one may be proved with the aid of Lemma 2, while the second

and the last one are known results.

14



Lemma 5 - Let A be an arbitrary number on'I'. For each f & LZ(Q)

and g & H''(2) (= the dual of Hy(2) ), consider u, & X} such that

(24) X(Ahuh,Ahuh) - b(uh,uh) = (f,Ahuh) +"(g,uh) ; upy é&XO ,

where for the expression (g,ﬁh) we have used ( , ) as the pairing

on H—I(Q) x Hé(ﬂ). Then for h small enough, up exists uniquely in

xg, and satisfies

(25) lagup <UL EN + Hellylg)

where the positive constant C can be independent of A, h, £, and g.
Remark 1 The corresponding properties hold for the continuous

version of. (24).

Lemma 6 (Mizutani [7]) For each A €T and f Hg(n), QN £
belongs to H*(R) N H(R) with the estimation

(26) lQIEll, s CllEll,

where C can be independent of A and f.
Remark 2 Notice that f'belongs to Hg(ﬂ) and 2 is a non-obtuse

polygonal domain.

Lemma 7 (Scholz [6]) For each A €T and f & H(Z)(Q), consider
Q(A)f and Qh(A)f when h is small enough. Then

27) 1 Q)£ - QMIE || + 2|10 k||l 4,0 ()£ - AQUE ||

<Chlin % £, ,

15



| | 3
(28) o (f - QE Iy < ¢4 n 2y,
where C can be independent of A, f, and h.

Now we can follow the standard procedure. Notice that ¢i = P¢

<= H4(9) N Hé(ﬂ), and consider
(29)

*
Then we can show that ¢hi and ¢i satisfy the estimations corresponding

are
h

*
’ ¢hm
On the other hand, dim E

. *
to (27) and (28). Therefore, for h small enough, ¢h1""

linearly independent and belong to Eh.

=m < m from Lemma 4, and hence {¢hi}T=1 can be regarded as a basis

of Eh.

Notice that mh = m and consider the basis {¢h.}m introduced

i‘i=1
in section 5. Then each ¢hi can be uniquely expressed as

3 . = i
(30) ¢h1 lealJ¢hJ (1<3zm

by choosing the coefficients aij (1 < i,j £ m) appropriately. Define
by by

m
(31) v, = .Z 1sigm

where aij are the same as those in (30). Noting that aij are uniform-

ly bounded with respect to i, j, and h, we have

1/2

2
(32) Nl op; - w; I #0211 nlll ooy, - o0, |l < chlinn|?

16



3/2

13’4 1n n| ,

(33) Il ép; - w3 ll; 2 C

where C can be chosen independent of i and h.
The above estimations implicate that there exists a function

.. m . .
wiesfisuff1c1ent1y close to each ¢p;+ In general, {lpi}i=1 is not

m

orthonormal in the sense (Awi,ij) = §... However, the basis {¢hJi=1

1]

has been chosen such that (Ah¢hi’Ah¢hj) = Gij’

find an appropriate orthonormal basis of E, each basis function of

and hence we can

which is close to one of ¢,. (1 < i < m), cf. Chapter 6 of Strang
hi = = p

and Fix [10]. On the other hand, the error of each A can be eva-

hi
| . ) 2
luated by the use of the relation A, . = b(¢hi,¢hi)/|lA¢hiH .

The final results can be summarized as follows.

*
Theorem 1 For h small enough, we can choose a basis {¢i}?=1 of E

such that

* . *
(34) (A¢i’A¢j) = Gij ’

1/2

*
(35) Il & - 8¢, |l £ Ch™%[1In h| ,

h®hi

*
(36) oy, - 03 1y < €h®/%j1n n)?/?

A

where 1 < i,j < m, {¢hi}?=l'is the basis of Eh'defined in section 5,

and C can be chosen independent of h and i. Notice that the choice

% :
of {¢i}?=1 may differ with the triangulation ™. As for the eigen-

value approximation, we have

3/2

(37) i - Aol € €n®*1n n| for 1<i<m.

17



Remark 3 At present, it is not certain whether we may expect the

estimations

*
Il 5 - ¢; Il £ Chlln h| for 1 <i<m.

7. Concluding Remarks

We have performed error analysis of a mixed finite element
model applied to linear buckling analysis of thin elastic plates.
The obtained order estimates of errors of the approximate eigenpairs
have been summarized as a theorem. We have only sketched the proofs,
and the detailed analysis will be reported elsewhere. The author
believes that the principles and techniques established in this note
will be available for the analysis of various finite element models.

This work is in part supported by the Grant-in Aid for the
Scientific Research from the Ministry Education. The author would
like to express his deepest appreciation to Mr. T. Hanada and
Professor T. Ushijima of the University of Electro-Communications

for their valuable advices and discussions.
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The Initial-Value Adjusting Method
for
Solving Problems of the Least Squares Type
of

Ordinary Differential Equations

By

Taketomo MITSUI#*

Abstracts
An application of the initial-value adjusting method for
the problem of the least squares type is considered. Conver-
gence property. of the method is discussed. An illustrative

numerical example 1is glven.

§1. The Initial-Value Adjusting Algorithm.
We are concerned with numerical procedures solving the
problems of the least squares type for ordinary differential
equations as following:

Find a solution of the differential equation

(1.1) %% = X(x,t), a <t <b

which minimizes the value

N
1 t :
(1.2) J =3 §=1 [Lyx(ty)-dyI0Lyx(ty)-d4],

where x and X are real n-dimensional vectors, tJ are

given points on I = [a,b], a=t, < t, < **c < ty=b, and L

2 N J

¥Research Institute for Mathematical Sciences, Kyoto University,
Kyoto, 606 Japan.
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and d'j are given nxn matrices and n-dimensional vectors
respectively. As far as the equation (1.1) is stable, the
problem 1s equivalent to find an initial value n such that
“he solution x(t) starting from n minimizes J.

N

Let us define a linear operator 1L : C(I) - B"” such

that for xeC(I)
(1.3) 1Lx = t(le(tl),---,LNx(tN)).

Denote the nN-dimensional vector t(dl,---,d by d. Note

N’
that J  1s represented by

(1.4) 7 =2 %{ax - alux - al.

After the 1nitial-value adjusting method proposed by
Ojika and Kasue [7], our algorithm can be expressed in the
following steps.

Step 0. Choose a suitable perturbation parameter € and
noemn, and set k=0.

Step 1. Compute the numerical solution xk(t) of (1.1)

an initial value

for the initial condition xk(a)=nk, and obtain the result-
- =1t -
ing value L,=Lx, and J, =5"{L -a}{L -@}.

Step 2. If the value’ Jk varies slightly in comparison

with J,_, (i.e. J,_;-J, 1s sufficlently close to 0 by the
criterion given in advance), terminate the iteration. Other-
wise, go to the next step. (If k=0, skip this step.)

Step 3. Set J=1.

Step 4. .Compute the numerical solution yiJ)(t) of
(1.1) for the initial condition yij)(a) = nk+;ej. Here eJ

means the J-th ulnt vector of B”.
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Step 5. Replace j by Jj+1, and return to Step 4
until J=n.

Step 6. Determine the nNxn matrix S(e;xk) (the adjusting

matrix) such that

(1.5) S(ﬁ;xk) = (%{ ]Lylil)—ll.k}, e s%{ n'yl%j)"]llk}s **Cy

1 (n)
Ay, -1,1).

Step 7. Determine the initlal wvalue Nyl for the next
iteration by
(1.6) n = n -{¥sE;x.)8(e3% )1 s(esx M L -2}
* k+1 k >k >k 2%k k *

Then replace k by . k+l, and return to Step 1.

Computational Remarks. In the above process, the numer-
ical integration of the differential equation (1.1) are
carried out by a 'suitable step-by-step method, for example,
the Runge-Kutta method. Since the matrix tS(E;xk)S(e;xk)
is an nxn symmetric, positive definite matrix, the square-
root-free Cholesky's method is preferable for the solution

of the linear.equation.in (1.6).

We shall denote the Euclidean norm of an n-dimensional
vector x by axhA. C(I) stands for the Banach space of
vector;valued continuous functioné on I, equipped with
the norm

Ixl, = $a§lx(t)ﬂ.
€

C;(I) means a subset of C(I) of continuously differenti-
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able functions on I. The norms for matrices R"™ -+ Rm' and
other linear operators should be taken as the induced norms
by the .corresponding vector norms.

Let 9 be the domain of the tx-space bounded on X,
intercepted by two hyperplanes t=a and t=b. The boundary
points of S on the hyperplanes t=a and t=b are supposed
to be included in ® and to make an open set on each hyper-
plane. Put

D = {xec(I); (t,x(t)) for teI},

D'={ xeC(I); (t,x(t)) for tell.

We shall analyse the initial-value adjusting algorithm
within the above framework. Because of space limitations,
we shall omit all the proofs of the statements, which will

be shown in other papers [5],[6].

§2. Some Preliminaries.

We shall adopt the following assumptions to the problem
(1.1) and (1.2).

Assumption 1. X(x,t) is defined and sufficiently con-
tinuously differentiable with respect to x on . . X and
ite derivatives are continuous with respeet to t on I.

Let us consider an operator F mapping B" to a func-
tion of C(I) along the flow generated by the differential

equation (1.1):

Fn = X[Fn(t),t], a< t< b,

o

Fn(a) = n.

Define a function J(n) by
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(2.1 J() = 3 Y1Fn -a1Fn-al.

Let &(t;x) stand for the matrizant of the linear

homogeneous matrix differential equation

Q1Q
e

= X _[x(t),t]e, a< t< b.

We shall call the matrix L&(:;%Fn) the G-matrix and denote
it by G(n).
Assumption 2. There exists a vector n* such that

(a,n*)eD, Fntep,

(2.2) e LFnt- d}=0
and
(2.3) det FGIN*)G(n*)#0

hold. Furthermore, there exists a positive constant €

such that for 0<|e| < € the initial value problem

%= X(y,t), a< t< b,

yla) = n*+eej

has a unique solution in D for every .

We shall call n* the exact (local) isolated minimal
point of J(n). Let L, be the bound of the operator-norm
of L on D.

For the matrizant &(t;x) the estimation
(2.4) Ne(esx)ll < M, for xeD'

is evident. Since D 1is open in Cl(I), for a positive
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constant M we can take a positive number A such that

1
in the A-neighbourhood B, of n¥*

B, ={ neR™; Un-n*y < A},
the inverse of compound G-matrixz defined by G (n) = Ca(m)a(n:,

exists and have the estimation

(2.5) 17 mn ¢ My,

Replace A by a suitable value less than A .if necessary,
then it 1is possible that
- *
I Fn-Fn "di 60
holds for neBA and small positive 60. We shall fix the

number A.

Lemma 1. For neBA, put x(t)=Fn(t). y(j)(t) in
Step 4 of the algorithm has the following expression.
(2.6) 39ty = zet)rele’ (t)40 9 (81} on 1,

where yﬁj)(t) i8 the j-th column vector of ®(t;z) and

v(j)(t) satisfies the differential equation

(2.7) d—”;'i;)ﬁ’ = L xtae)+el P9 (404009 ()}, £1-X12(8), £1) -
-Xxfa:(t),t]‘f(j)(t), a< t< b

subject to the initial condition

(2.8) 29 (a) = 0.

Moreover, for arbitrary emall |e| there exists a positive

congtant C* . such that v(a)(t) satisfies
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(2.9) uv(j)nc < ctle) .

Through the equation
S(E;?n) - G(n) = ]L(V(l),oc.’V(J)’.oo,v<n))’
Lemma 1 immediately implies that there exists a small positive

number €, such that for 0¢ |e| < €, the estimation
(2.10) IS(e;Fn) - G(n)l ¢ C¥*e = §,

holds in B,. Furthermore, for O i=|s|<;'eo and neB,
the inverse of the compound adjusting matrixz CS(e; Fn)s(e; Fn)
exists and

M

(2.11)  I{ s(e;Fn)S(e; F) < 1
e;Fn)s(e s T-8,M, (2L M+ 87)

holds.
Corresponding to our iterative process, an operator A
mapping B? into 1itself is defined by the followlng:

The domain of A is i1dentical to BA'

(2.12) An =n-{ts(e;37n)s(8;<¥n)}'l tS(G;?Fn){Lffn—d}

for ncBA.

The lterative process 1s simply represented by

(2'13) = /Ank’ k=0,1,2’...c

Mk+1

Thus our aim 1s concentrated on the analysis of the operator

A,

8§3. Fixed Point of the Operator A.

It is noteworthy that the exact minimal point n¥* 1is
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not a fixed point of .4, because a fixed point of &

must satisfy the equation

(3.1)  {*s(e;Fms(e;F )1t Es(e; Fn) (Fn-al=0,

(3.1)'  Us(e;Fn)(LF n-a}=o0.

On the other hand, from (2.2) n¥ satisfies
Ca(n*) (LF n*-a}=0.
S(e3%n) 1s surely an approximation of G(n), but is not
ldentical to that as far as e#0.
Therefore, we should answer the question whether a fixed
point of ﬂ4 exists. We shall show that it actually exists
in some neighbourhood of n¥*¥ by the implicit function theorem.

Define a function f7?n,e) by
(3.2)  F(n,e) = 's(e;%Fn) (1F n-a}

for .(n,e) such that neB, and 0 < lel < €.

Lemma 2. Define f7?n,0) by
(3.3)  ET(n,0) = 1imJ(n,e),
e+0

then

(3.4)  Tin,0) = tam)eFn-a)

holds.

The following two lemmas say how the adjusting matrix
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depends on € or n Wwhen they make a small variation.

Lemma 3. For neB, and |e,|,le,| < €45, the estimation
(3.5) 15(e s Fn) - Sley; Fnlll &, const. |e -,

holds. Here the constant does not depend on n, €4 and €g-

Lemma 4. For sufficiently small numbers K and €, the

equation
(3.6) S(e;TF(n+E)) - S(e;Fn) = LP(+;Fn,e)E + o(HEN)

holds if n, n+EeBy and le| < &. Here P(t;Fn,e) is a
linear mapping which mapse EeR" to an nxn matrix P(t;Fn,el&

with components of continuous functions on 1.

Lemmas 2 and 3 and the implicit function theorem imply

the desired result.

Theorem 1. There exist positive numbers A, and €y
such that, for any € satisfying |el <€ the equation
Jin,e) = 0 has a unique solution N = fife) in the ball

in - n*l < 8,, and T > n* as €+ 0.

We shall denote the fixed point of A by fi = fi(e)
whose existence has been guaranteed by Theorem 1 and call it
the approximate minimal point of J(n) because 1t 1s an

approximation of n* and tends to it as € -+ 0.
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§4. Convergence of the Iterative Process.

Since 7 1is defined by J(f,e)=0, the equation
(8.1) {®s(e;FRIS(e;FMIT Ts(e; FAN LFA-a)=0
holds if WIN-n*l < A. Then we have
An - f =1 -8 - ("s(e;Fn)s(e3FN Y 1T (n,e)
=n -7 - { e Fns(e;F) Y H Tn,e)-T(H,e))

{¥s(e;Fn)se; M N ®s(e;Fn)s(e; Fn) (n-A)-

- 7,]<ﬁ,e><n-ﬁ>}+o<nn-ﬁn>.

Here f7h(ﬂ,e) stands for the Jacobian of 37' with respect

to n. Utilizing the results of the previous section, we

can investigate the estimation for the term
*s(e;Fn)s(e;Fn) (n-M)- T, (R, e) (n-) .

Then, with the estimation (2.11), the contraction mapping

principle brings the following

Theorem 2. There exists a positive number A, such that
the iterative process (2.13) starting from any n 1in the

Ag-neighbourhood of T converges to M.

Remark. The results in the previous section also gives
the explicit formula for the Fréchet derivative of .4 at f.
By the consideration of &' (f), we can conclude thét the
convergence of the iteration would not be expected to be
quadratic in the neighbourhood of fi while a fixed € is

chosen to be apart from zero.
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Next, we shall investigate the approximation order of

ﬁ for

Lemma 5. For neB, and |e|,|e+v| < €

(4.2)

holds,

n*, The following improves the statement of Lemma 3.

0° the equation

S(e+v;Fn) - S(e;Fn) = Lp(+;TFn,e)v + ol |v])

where p(t;TFn,e) 18 an nxn matrix with components

of continuous functions on I.

By virtue of Lemma 5 we obtain informations about the

derivatives of <J/(n,e) with respect to = 1in some neigh-

bourhood of (n*¥,0), which implies the following

Theorem 3. In the neighbourhood

{(n,e); In-n*1¢ A, and |e| < ezl

f(e) whose existence is guaranteed in Theorem 1 has the

estimation such as

(4.3)

Let
in [u],
reactor

The

(5.1)

HA(e)-n*| < const.|e| as e~0.

§5. An Illustrative Example.
us consider the following problem originally mentioned
which occurs relating to the tubular flow chemical
with axial mixing.

differential equation 1is

d°x _ cdx
drz dt

2

By the transformation
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(5.2) t=1- 21,

the equation (5.1) can be reduced to the following differ-

ential equation:

ct

(5.3) —5 + 3%5 - 3x2 = 0, =1<'t< 1.

The constraining condition of least squares type is as

follows:

.0

1
(5.4) ) {x(tJ) - yj}zﬂ minimum,
J

=0

where

(5.5) tJ = 0.2 - 1.0 (3 = 0,1,-°°,10)

and y, (J = 0,1,-++,10) are given in Table 1.

Table 1.
J 0 1 2 3 y 5
yJ 0.38727 0.39476 0.41305 0.43862 0:47017 0.50764

6 7 8 9 10
0.55172 0.60372 0.66559 0.74012 0.83129

This problem is equivalent to the example in [2].
We shall rewrite the problem into the vector form

as (1.1) and (1.2). The equation (5.3) 1s transformed into

(5.6) -1< t < 1.
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X
Let x Dbe the vector x = [XI], then (5.6) 1is equivalent
2
to
(5.6)" dx _ X2 , -1<¢ t< 1
* at 3x2 - 3x
1 2
and the functional value J to be minimized 1s
1 10 ¢

Here tJ (3J=0,1,++,10) are the same a5 in (5.5), the

‘matrices Ly (§=0,1,+++,10) are

5 o)
Lo=Ly=***=L10= lo o) °

and the vectors dJ (J=0,1,¢¢+,10) are given by

y
- J }
d - .
J [o.o

The results of the numerical computation carried out Dby
FACOM M-190 in the Data Processing Center, Kyoto University
are shown in Tables 2~4. For the numerical integration of
ordinary differential equations the Runge-Kutta-Gill method
programed by T. Ojika was used. All the calculations were

carried out in the double precision arithmetic.
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Table 2. Results obtained by the i1teration.

itera- 0
tion
times xl x2 x1 x2 x1 x2 xl x2 xl x2
tg=-1.0[0.5 0.0 0.37806769956 0.10806510612 | 0.38702086627 0.00261251861 | 0.38727177735 =-0.00004288586 | 0.38727191330  -0.00004431630
£,=-0.8 0.51252090985 0.11507113359 | 0.40171204036 0.12821189883 | 0.39490532424 0.07015010707 | 0.39476040385 0.06869739433 | 0.39476032659  0.06869661205
t,=-0.6[0.54334736769 0.18909213769 | 0.42937707807 0.14869156970 | 0.41341909766 0.11229585764 | 0.41304637216 0.11139645273 | 0.413046T7227: 0.11139596872
£,=-0.4|0.58721750119 0.24863472740 | 0.46135283076 0.17162147360 | 0.43913778607 0.14393243601 | 0.43861177501 0.14326111462 | 0.43861149266  0.14326075367
¢ ==0.2|0.64281390289 0.30821629103 | 0.49830337268 0.19871943583 | 0.47081948324 0.17287829974 | 0.47016701758 0.17226427328 | 0.47016666726  0.17226394342
£5=0.0 [0.71115159268 0.37748477983 0.54123626991 0.23176626442 | 0.50841638291 0.20369262002 | 0.50763820223 0.20303615170 | 0.50763778440  0.20303579926
tg=0.2 [0.79503126629 0.46516837677 | 0.59155143668 0.27296261250 | 0.55263785706 0.23962085391 | 055171808024 0.23885031164 | 0.55171758641  0.23884989812
£,=0.4 [0.89914650517 0.58192807415 | 0.65116185255 0.32531012072 | 0.60480645049 0.28369352839 | 0.60371555428 0.28274087195 | 0.60375496863  0.28274036083
tg=0.6 [1.0307690460 0.74350525298 | 0.72270288155 0.39313865121 | 0.66689448238 0.33949736231 | 0.66558820885 0.33828049978 | 0.66558750766  0.33827984706
£g0.8 [1.2012163950 0.97571861039 | 0.80987497209 0.48294851916 | 0.7417094883 0.41193878825 | 0.74012428084 0.41034340656 | 0.74012343005 041034255099
£,,"1-0[1.4287209566  1.3241632086 | 0.91800946931 0.60486691312 | 0.83325492973 0.50828488609 | 0.83129911340 0.50613875295 | 0.83129806389  0.50613760232
3 4.93x107" 1.16x10" > 5.81x10”° 1.12x10710 1.10x10" 10

7

convergence criterion 1.0x10~

step size for the Runge-Kutta method 0.003125

e = 1.0x10°8



Table 3. The results for different starting values (I)

(e=1.0x10"2)
(a) (b) ()

Starting xl(-l.O) 0.5 0.4 0.1
Values { x,(~1.0) 0.0 0.0 0.0
Iteration times 4 3 5

3, 4.93x10”1 | 4.60x1073 | 1.16

3, 1.16x1072 |1.54x107C |3.21x1071

3, 5.81x107% |1.11x10719] 3.45%1073

Iq 1.12x1071%}1.10x10720 5. 70x10"7 |

I, 1.10x10‘1d'//////”/ 1.10x10"10

Te - /,/////”” 1.10x10"%0

For the above three cases all the converged

values at each tJ
figures.

convergence criterion

step-size for the Runge-Kutta method
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1.0x10"7

coincide to eleven

The values are shown in Table 2.

0.003125



Table 4.

The results for different starting values (II) (e=l.0x10:6)
(a) (b) (c)
Starting xl(-l.O) 0.5 0.4 0.1
values {xz(—i.O) 0.0 0.0 0.0
Iteration times 4 3 5
3, 4.93x10"1 | 4.60x1073 1.15
3] 1.16x1072 | 1.54x107° 3.21x1071
3, 5.81x107% | 1.11x10710 | 3.45x1073
I 1.12x10710%] 1.10x107%% | s5.70x2077
Iy 1.10x10" 10 _,,,/””//// 1.10x10" 10
e | _— | __— 1.10x1071°
N )

~—
['or the above three cases all
values at each ¢t

the converged

coincide to eleven

figures. The values are following:
?3\\\\ Xy *2
-1.0 0.38727191327 -0.00004431619
-0.8 0.39476032658 0.06869661211
-0.6 0.41304617226 0.11139596875
-0.4 0.43861149265 0.14326075369
-0.2 0.47016666726 0.17226394343
0.0 0.50763778440 0.20303579926
0.2 0.55171758641 0.23884989812
0.4 0.60371496863 0.28274036083
0.6 0.66558750766 0.33827984706
0.8 0.74012343005 0.41034255099
1.0 0.83129806389 0.50613760232
convergence criterion 1.0x107 !
step-size for the Runge-Kutta method 0.003125
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A Direct Method for Solving Two-dimensional

One Phase Stefan Problems

By

Vitoriano RUAS B. SANTOS*

“Summary

A new algorithm 1is proposed for solving the Stefan problem
for the case when the initial region occupied by the medium in
a given phase is a starshaped two-dimensional domain.
The evolution of this region as time increases is determined
by plotting the free boundary directly. At each time step this
is approximated by a polygon in the interior of which the heat
equation is solved with piecewilise linear finlite elements.
Numerical experiments indicate that the method is stable
and that convergence is to be expected, under suitable assumptions
on‘the regularity of both the boundary and initial data of the

problem.

1. Introduction

We shall be concerned here with an algorithm for solving
one-phase Stefan problems 1n two-dimension space. The basic
tool for the algorithm 1s a method of automatic generation of
triangular finlite element meshes that the author initially proposed

for solving boundary value problems defined on stationary star-

* Computer Science Department, Pontiffcia Universidade Catélica
do Rio de Janeiro, Brazil
and Department of Mathematics, University of Tokyo.
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shaped domains [8]. In that work many technical details of 1its
implementation are given, while regularity properties of the so
generated mesh have been analysed in [9].

This automatic triangulation process is used here both for
plotting the free boundary and for adjusting the mesh, so that
the heat equation can be conveniently solved just in the domain
occupied by one of the phases of a certain medium undergoing a
change of phase. This is what we call a direct method of solution
of a Stefan problem. |

Actually, our algorithm generallizes the one proposed by
Mori [6] for the one-dimensional case. In his work the free
boundary 1is determined after.each increase in time of a fixed
value At, while the mesh containing a fixed number of intervals
moves according to the new shape of the domain. As it was well
femarked by Prof. Fujita [3], our triangulation process could be
the appropriate means of doing the same thing in the two-dimen-
sional case, provided that the outer boundary of the initial
domain is starshaped and that i1t remains starshaped as it evolves
in time. Of course, since the domain 1s 1in itself one of the
unknowns of the problem, the latter conditlon cannot be satisfied
a priori. However, one might expect that, in most practical
cases, the domain becomes more and more regular as time increases,
in the sense that it actually remains starshaped, although
rigorous proofs are not avallable yet.

Let us also say that Mori applied with success a slight
generalization of hls one phase algorithm to a two-dimensional
strip domain [7]. Later Bonnerot and Jamet proposed the direct

solution of one phase two-dimensional Stefan problems by tilme-
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space finite elements [5]1. Though thelr method works well in

many cases, as shown by their examples, they did not propose any
solution to the problem of dealing with the spatial mesh as time
increases. We believe this may cause either numerical incon-
venlence or difficulties of implementation for_practical cases,
unless a suitable solution of this problem is a part.of the
algorithm itself (see comments in Section 5).

Finally we note that a number of reasonable algorithms for
indirect solution of the two-dimensional two phase problem are
available at present. As a significant example of those we
. mention the work of Ciavaldini [1], that is based on a suitable
transformation of the heat equation into a semilinear problem.
This 1is solved on the fixed bounded domain occupied by the
medium in both phases, and the position of the free boundary is
then determined with the help of a function of the solution of
the transformed equation. By introducing appropriate modifica-
tions, this approach can also be used for solving the pure one
phase problem. However, in this case, although one can linearize
the discrete problem, it 1s necessary to perform the calculations
for a domain much larger than the one occupied by the only phase
undergoing changes of temperature. This can be impractical in
the case where the domain evolves to'very large regions compared,

to the initial one.

2. The Continuous. Problem

As we will comment in Section 5, with the eventual introduc-

tion of simple modifications, our algorithm can be applied to

1 Actually, thelr algorithm gives approximate problems very
close to Mori's in the cases he::.considers.
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the solution of a very wide class of Stefan problems. However,
we shall confine ourselves here to the solution of the special
case of continuous probiem defined on domains whose growth is
not at all limited a priori, as described below. Our algorithm
seems to attain the best of its efficiency compared to others
particularly in the case where the domain may become much larger
than the initial one.

In the sequel we introduce the formulation of the one phase
Stefan problem we shall consider here, as a speclal case of the
general multidimensional one treated by Friedman [2].

Let a éertain medium exlst 1n two different phases 1 and
2. Phase 1 ocgupies initially a certain bounded region QO of
the x-y plane, whose boundary consists of two disjoint curves
PO and Tr¥, PO is the interface separating both phases at time
t =0 and T'* 1s a fixed curve where.heat sources are to be
applied. We assume that T* 1ies in the interior of FO and
we denote i1ts own interilor by o¥.

We assume also that both 0° U @* and Q* are starshaped
domains such that there exists one point O € Q* for which the
segménts Joining it to any other point either of Q* or Qollﬁ*
lie completely in  those sets, respectively. An example of sets
¥ énd QO satisfylng this assumption 1s illustrated in

Figure 1,

Figure 1
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As time increases a change of phase 2 into phase 1 will
occur in the medium lying in the region beyond PO. So, the
corresponding problem will be defined on the region R2-Q*.

As a practical example of this situation we have the problem
of melting ice by heating some already melted region QO with
a pipeline represented by TI'* (Figure 1).

We shall denote by Q(t) and T(t) the domain occupied
by the medium in phase 1 and its outer boundary respectively, at
time t, t > 0. Clearly we have Q(0) = QO, r(o) = ro and
that T(t) UT* 1is the boundary of Q(t).

Let
(1) d(x, y, t) =0

be the equation of the free boundafy T(t)., We assume that ¢
s such that ¢(x, y, t) < 0 for (x, y) € 2(t)V 8% and

¢(x, y, t) > 0 for (x, y) £ Q(t) U Q*. Now, supposing that
the heating process takes place up to time T, for the tempera-

ture u of the medium in phase 1 we have the heat equation:

(2) *—’% =Au in q(t) V¥Vt e [0, T]

Q

with the initial condition:

(3) u(x, y, 0) = uo(x, y) in @°
and the boundary conditions:
(1) u(x, t) = g%, t)
or
(u)e %%(i, t) = g' (%, t) (v denotes the unit outer

normal vector of T¥),

for x €T*, V¥t e [0, T],
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and

ot

(5) u(x, t) =0 for x & I(t), Y¥Yte [0, TI.

Also for each time ¢, the so-called Stefan condition holds

on T(t)
- 99
(6) (Vo, Vu)l Kot -

XeT(t) i
where X 1s a poslitive constant and (-, *) denotes the scalar
product in R2.

Thus the problem we want to solve 1s finding ¢ and u
to satisfy (2) ~- (6).

As we have already mentioned, the algorithm we shall employ
for solving this problem, 1s constructed upon a process of
automatic triangulation. Thils in turn is based on the represen-
tation of the free boundary by an equation in polar coordinates

(p, 6). So i1t will be useful to take ¢ to be an expression

of the form:
(7) ¢ = p~-s5(8, t).

In order to do sco we mus%t choose first of all a sulitable origin o:f
coordinates 1lying in 0*. According to the assumptions that we
have made it 1s possible to choose such an origin so that both
r* and Tr(t) can be represented in polar coordinates2. Thus

it makes sense to write ¢ in form (7), and we have:

V¢ = (cos 9+—Sl-—g%sin 0, sin 6 - = g cos 6 )

—
)]

|

u|
@

and

O U@* should be "non-singular" star-

2 Strictly speaking €
shaped. For the corresponding definition and other detai.s

see [J].
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and

3¢ _ _3s
at ot *
Thus (6) becomes:
Ju 193sdu = 9s
(8) [ -25532] - X3¢

| (0,0)€r (t)

v o

du u
where 5p and 50 ares respectively, derivatives of u 1in

two perpendicular directions (see Figure 2). The meaning of the

first derivative 1s clear whereas the second one is simply

o
/e

On the other hand, according to (5), the tangential deriva-
tive %% on T'(t) must vanish.

So denoting by a the angle between the polar radius and by

v the outer normal on TI(t), we have:

<

Flgure 2

au au =
(9) 50 sina+ao cos a 0.

Using (8) and (9) and taking into account that
s

tan a = 5 >

w |-

we get:
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] 1 9s ¢ du _ 9S
(10) []4(-§ 'B—G)Jap“):s(e’t) Kat.

(10) is the expression of the Stefan condition when u 1is

given in polar coordinates.

3. The Algorithm

We shall now describe the algorithm that we propose for
solving (2) a~ (6) numerically.

First of all the discretization of (2) ~ (5) is performed.
by standard methods‘applied to the corresponding variational

formulation, namély:

QL

(11) / —Bvdx=‘—f vuvv dx Vvev, ue'

a(t) ° Q(t)

If the Dirichlet-type boundary condition (4) holds, or

(1) J g%vdx=-f Vuvvdx+ [ g'vds VYvev', uev'

Q(t) ° Q(t) r¥

in case the Neumann-type boundary condition (4)' holds. Here V
and V' are the subspaces of Hl[Q(t)] of functions that vanish
everywhere on r(t) UTr* and on TI(t), respectively, and V
s the linear variety of V consisting of functions w such
that w=g on T¥,

For the discretization in space of (11) and (11)' we use
a triangulation of Q(t) on which we construct finite element
spaces Vh or Vﬂ of plecewise llinear contlinuous functions.
Functions g and g' will be replaced by thelr plecewise linear
interpolate 8, and gﬂ which colncide with them at the nodes
lying on T¥*, respectively. Thus in case (4) holds, the

approximate solution Uy will belong to Vh’ discrete analogue

~ ~

of V, 1.e,, the linear variety of Vh such that whé. Vh
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implies W, = 8, on the inner polygonal boundary approximating
r¥ ., If (4)' holds, integration will be performed along this
polygon instead of r*.

For the discretization in time we employ'standard schemes.
This means that once obtained a linear system of ordinary dif-
ferential equatlons after discretization in space:

ou, (t)

h =
(12) Mh(t) 5T -+Ah(t)uh(t) Q ,
we start with uo =u, , Uu being the V'-interpolate of u,,
h 0h Oh h 8
and calculate uﬁl,tﬁf, ...,uﬁl, ..., approximations of uh(t)
at lncreasing times values tl’ t2, ...,tn, . by
u? un-—l
n h™ ’h n n n-1, _
Mh(Tn)tnftn_l + Ah(rn)[wuh-l-(l—w)uh 1 =0

where T, = th'+(l-w)tn—1’, and w € [0,1] .1s the scheme
parameter.

As a mattef of fact, we take a constant increment of time

At, so that tn = nAt, and approximate Q(tn), say by 92.
Integrations are performed on a weighted domain given by
WQE-+(1-W)QE_1. Matrices Mg and Ag do not really depend on
t, for the approximate domain Qﬁ changes discretely..  Thus the
argument Th above only accounts for this interpolation.

Before describing how we determine 92, we should give a
short account of the triangulation method that we use.
Let p = sO(G)_ and p = s*(6) be the equations in polar

O ana r'*, respectively.

coordinates of r
Now, given € >0 (possibly small), we choose integers m

and p such that:
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|5%(8) _s2(0)-5*(8)
m

(13) max

D | <€
pe[0,2m]

and we define
M= 8(p+m).

Let the boundary of QO be approximated by polygons FO

h
and T; whose vertices are the intersections of Fo and TI¥*
with the lines 6 = ej’ jJ=20,1,...,M=-1, and 6 = e;, i=0,1,
...,8p=-1, respectively, where GJ = JB8 and 0; = ig¥, B and

B* belng given by

(14) B8 = m/b(ptm)
and
(14)1 - g* = q/4p .
Let Qg be the domain bounded by Fg and r;, and
p = sg(e) be the equation of Fg in polar coordinates.
Now the vertices Pkl of the triangulation of Qg are
defined as follows:
Prg = (Prgs Byy)
0 = 274
ke k 0 ) *( )
(15) s, (9 -s5"(0
Prs = (k-p) h' ki kg + S*(ekg)

k = p, ptl, ...,p+m; & = 1,2, ..., 8k.

An illustration of the so obtalned triangulation 1is given.
3

in Figure 6 (see Section U4) for p =4 and m = 2.° For other
details see [9].

The meaning of € 18 establishing a relation between p

Thls triangulation is slightly different of the one we
consider in [9]. The essential difference is due to the
exclusion of the triangles lying in Q¥.
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and m so that the length of all the edges of the mesh remain

of the same order as we refine the mesh. In the ideal case €

2). In this way we can

should be chosen to be at least O(m
immediately conclude that the spacial step size h 1s defined
as O(m-l) or equivalently as O(p-l). But in most practical
cases € 1s just O(h) = O(m’l) and still the above equiva-
lence could be verified.

Notlce that by this process, Fg is a polygon of M
vertices and that the domain is divided into 8 Dbasic sectors
of amplitude w/4, where the same kind of partition is performed.
Also, in each sector we have p+m boundary triangles, i.e.,
p+tm triangles adjacent to rg along an edge; between neighbor-
ing pairs of those boundary triangles we have p+m-1 interposed
triangles, intersecting ro by one vertex,

h
Let us now introduce the process for determining the

position of the free boundary Pg at the n-th time step, n =
n
1,2, ..., and consequently 92, the interior of thJP;.
First we denote by sg the polar radii of Fg in the

directions 61, J=0,1,..., M-1.
Now we assume that during the fixed time increment At,
Pg—l ‘moves to Pg "in the way shown in Figure 3, which repre-

sents a part of the domailn.

Figure 3




As? being the displacement of the boundary in the direction
GJ, J=0,1,...,M-1, the polar radii s? defining the new
boundary FE are given by
s? = s?'l-+Asj , n=1,2,..

The increments As? are calculated by discretizing the

Stefan condition (10) as follows:

Asgh aun-l g~1_ g—l )
(16) P h (P)]1+ ilil_ii:_
At ap J , n-1
2Bs
J
where sﬁ‘l = sg-l, Sn;l = sﬁ—i, B 1is given by (14) and P.
- - sun-1 J
are the vertices of PE, as shown in Figure 3. "gp (Pj) is

calculated in two different ways according to the position of

PJ:

1. If J = k(ptm), k = 0,1,.,.,7 then 1t is simply

—

calculated along the edge Q1P1 lying on the lire 6 = 6

(see Fig. l4a),

Mgure U

n-1

ou
2. If j # K(p+m), k = 0,1,...,7, then —jﬁ;—(Pj) is

calculated along the segment QJPJ (see Figure Ub)
lying in the interposed triangle between the boundary

triangles having P7 as a common vertex.
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We note that due to the definition of our triangulation
process, the latter operation always makes sense.

Finally, keeping the number of triangles constant, we simply
define the new mesh by the automatic triangulation method (15)
by replacing sg by sg, for n> 0, p = sﬁ(e) being the
equation of the polygon PE. |

We should note that in our method each basis function 93

depends on time, for the corresponding node P moves at each

i
time step. Denoting by N(h) the number of nodes and by ui(t)
the coefficient of wu (t) associated with ¢, that is, with

node Pi’ we have

—

du N(h) zdu,(t) o¢
2= L (T

h
? + u .
t at 379t Yy

Now recalling (12) we have:

3,
Ap(8) = ([ TV 7ey + ¢, ] dx}

and

M (t) = { dx}t .
N {In(t)v'ifrJ }

The mass matrix Mh(t) is obviously symmetric but Ah(t)
s non-symmetric due to the second term in the integrand. Actual-

ly the non~-symmetric component of Ah(t) is matrix Vh(t),

3¢

J
vV (t) = ? — dx
h Un(t) 1 3¢ O

that is called by Morl the velocity matrix; since 1t accounts

for the effect of displacement of the nodes with respect to time.
Another point that is worth a remark is the following.

Since for this algorithm we do not increase the number of tri-

angles, and since the edges of I} have fixed length at every
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time step, triangles closer to F; will tend to elongate as n
1ﬁcreases. Although from the accuracy viewpolnt this may not be
a desirable situation, as far as the rate of convergence is
concerned, this violation of the classical angle condition for
unbounded n does not yleld any disadvantage. Indeed, as 1t
has been proved by Jamet [4], the essential condition for main-
taining the optimal rate of convergence of triangular finite
element approximate solutions is not the lower boundedness of
the angles, but the fact that no angle approaches 180° as the

mesh is refined. Such a situation is not occurring here.

y, Numerical Results

We have tested the numerical viability of the algorithm
proposed here which generally presented a good performance. Some
singificant examples of the obtained results are given below.

A1l the calculations were done in double precision on the
HITAC/8800-8700 of the University of Tokyo Computer Center.
For the solution of the systems of linear equations we used the

Gaussian method for band matrices.
Example 1: For the given initlal domain
Qn = {(x, y)/1<p<2}
we take as an exact solution the function

2

-1 _po
u=3t+2-¢35)

that satisfiles a non-homogeneous equation of the form:

- Au =t

vl
e

The equation of the free boundary i1s p = t + 2. We preferred to

choose (4)' as a boundary condition, so that we can compare
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computed values of u at the stationary nodal points of the

grid, i.e., those lying on T¥,

We calculate up to time T = 1 so that the final domain is

Q(T) = {(x, y)/1<p<3}.

Due to the symmetry of the problem we have performed the

calculations only for the sector 0 < 6 < w/4,

We define h = 1/m and we take p = m (so, in (13) €= 0).

We also take w = 1 as the scheme parameter so that we obtain

a usual implicit scheme. In this way we choose At = h/5.
Table 1: Computed values of u for p= 1.
6 h t=0.1 't =0.5 t=1.0
0 1/2 0.8194 1.0528 1.3175
n/8 0.8111 1.0424 1.3068
0 1/1 0.8154 .1.0487 1.3206
m/8 0.8114 1.0442 1.3161
0 1/8 0.8132 1.0483 1.3255
w/8 0.8117 1.0467 . 1.3237
0 0.8123 1.0488 1.3289
1/16 : :

n/8 0.8118 1.0483 1.3283
Exact Value 0.8119 1.0500 1.3333

Table 2: Maximal absolute errors of the computed solutior.

h t=0.1 t=0.5 t=1.0
1/2 0.0147 0.0661 0.1310
1/4 0.0070 0.0319 0.0649
1/8 0.0033 0.0156 0.0322
1/16 0.0016 0.0077 0.0160
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Remarks: 1. Those maximal absolute errors occur on the
computed free boundary where the computed solution
vanishes.

2. From Table 2 one can see that the observed rate
of convergence in the maximum-norm is one for
each ¢t.

Table 3: Position of the free boundary for
& = 0 and computer time.

h t=0.1 t=0.5 t=1.0 Comp. Time

1/2 2.0875 2.4423 2.8807 4.019sec.

1/4 2.0940 2.4713 2.9396 5.963sec.

1/8 2.0971 2.4857 2.9696 25.28Usec.

1/16 2.0986 2.4929 +2.9847 254.324sec.
Exact Value 2.1000 2.5000 3.0000

Remarks: 1. For other values of 6 the computed values
are nearly the same which means that the free
boundary 1is stably plotted.

2. One can observe linear convergence for the

position of the free boundary.

Example ?: We take an example simi1ar to the preceding
cne. Only this time T¥* 1is reduced to a point, namely the
centre of the circular domailn:

Q0 = {(x, y)/0<p<1} .

The exact snlution in this case is chosen to be:

o]
-1 _p
u = 5 (t-fl t+l)

so that the equation of the free boundary is p = t +1.

In this case it only makes sense choosing boundary condition

().
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Again we take h = 1/my, w=1 and h = At/5. Obviously
this time p = 0. We perform the calculations only in the sector
0<6<m/U, up to time T =1, i.e., the final domain is given
by

Q(T) = {(x, y) /0<p<2}.

Table 4: Maximal absolute errors of the computed solution

h t=0.1 t=0.5 t=1.0
1/2 0.0299 0.1317 0.2516"
1/4 0.0141 0.0643 0.1271
1/8 0.0067 0.0315 0.0635
1/16 0.0032 0.0156 0.0316

Remarks: 1. The basic convergence properties shown in the
preceding example can be observed here also,
although convergence itself seems to become
slower.

2. For the position of the free boundary the

preceding remark also applies.

Example 3. We take data symmetric with respect to the 4
directions o = in/4, 1 = 0,1,2,3 and we solve the following

problem:

( %% = Au in Q(t) x[0, 1], plus Stefan condition on T (t)

1]

Ty o 0 cos 4e
u(o, x) = u, in @-, uy = 2-p--35
{ r* 1s given by s*(g) =1 Vo
FO is given by sO(e) = 2_<xﬁz39

g, X) =1 for X &r* and te [0,1]

-

L u(t, x) =0 for

Eh g

€ r(t) and t € [0, 1].
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1

= ).

€ <0.1m

p m (so that
1 but this time we take At

We define h 1/m and we take

We use agalin w = = h/2.

For any quantity 1)’, we denote by th its approximation

for a certain value of h, and we define §V;, by:
_ b
th'lo'lvh"‘l)'2h|'

Table 5: Position of the free boundary for 6 = 0.

t - 0.25 0.50 0.75 1.00

h sh(O,t) Gsh sh(O,t) Gsh sh(O,t) Gsh sh(O,t) 6sh
1/2 || 2.1500 2.3110 2.4407 2.5533 _
1/4 || 2.1153 | 347 | 2.2585 | 525 | 2.3750 | 657 | 2.4768 | 765
1/8 || 2.0960 | 193 | 2.2303 | 282 | 2.3400 | 350 2.4366 | 402
1/16| 2.0859 | 101 | 2.2155 | 148 | 2.3219 | 181 | 2.4158 | 208
1/32) 2.0807 52 | 2.2080 75 | 2.3127 92 | 2.4053 | 105

Remark: Again the observed rate of convergence is one for

the position of the free boundary.

for

Table 6: Computed values of u p=1 and 06=0.

t + 0.25 0.50 0.75 1.00

h uh(l,O,t) 6uh uh(l,O,t) Guh uh(l,o,t) Guh uh(l,O,t) Guh ,
1/2 1 0.87L5 0.8545 0.8522 0.8605

1/4 || 0.8650 95| 0.8424 121 0.8426 96| 0.8545 60
1/8 || 0.8541 |109| 0.8279 |iu5| 0.8291 |135| 0.8427 |118
1/16 || 0.8469 721 0.8183 56 | 0.8201 90| 0.83U6 81
1/32410'8u28 41| 0.8130 53| 0.8151 50| 0.8301 45

Remarks: 1. It seems that the optimal rate At/h for the

purpose of economy is far less than 1/2. Indeed

we observed that for the same value of h the
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approximate values obtained with At = h/5 are
much closer to the estimated solution (by extra-

polation to the limit) than those in Table 5.

So, in practice At should be"small even for
w = 1.

2. The number of operations necessary for solving
the system of linear equations is O(mu) whereas
the composition of matrices at each time step
is only O(m2). So we suggeét also the folloWing
procedure:

Choose w = 0, 1.e., an explicit scheme, with
° lumped mass system [6]. In this case there is
no need to solve a system of linear equations at
each time step. Although for expliclt schemes
we must take At = 0(h2) this could be advanta-
geous in some cases (for instance, when m is
sufficiently large). This statement 1s based
on the fact that the number of operations with
this modified scheme becomés O(m”) instead of
O(ms), and is also supported by the preceding
remark.
In Figure 5 we shaw the evolgtion of the free boundary for
increasing values of t and h = 1/32. The dotted lines show

circles with center O.

Example 4: We have tested our algorithm to a whole domain
by solving a non-symmetric problem similar to the one of the
preceding example, We have observed basically the same prop-
erties, although in this case we could not use too small mesh

sizes because the computer time increases sharply. So we prefer
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showing the results obtained for the following problem in which

the domain evolves up to large values of T:

0

- T is given by a set of 96 points equally Spaced in 6

and with polar radii ranging from 1.0 to 1.4, as shown in
Figure 6. So we consider FO, to be a polygbn.

- I'* 15 defined by p = 0.8.
, au
- u, 1s the function such that —2 =1 Vxea®, u, ., = 0.
r

g S

p
(x, t) =1 VYte[0o, T] and xer*.

-3
<

The aspect of the 1nitial triangulation is shown in Figure

6 for p =4, m= 2. We actually calculate with p = 8 and

m 4 (so that € < 0.05). Defining h = 0.8/p we choose At
= h, 1.e., At = 0.1. We calculate up to time T = 10.0, and
we show 1n Figure 7 the evolution of the free boundary as time

increases. 1In this way the computation lasts about 3 minutes.

5. Concluding Remarks

Although we did not consider explicitly other cases, it
should be clear that every one-phase Stefan problem in which the
domain evolves as a starshaped one can be treated 1n a similar
way to that described in Sections 2 and 3. In particular we
mention the case of bounded domains such as the region § shown
in Figure 8. By introducing appropriate modifications, we can
take into account the gradual transformation of edges of the
approximate free boundary into edges of the fixed external bound-

ary I, and then solve the problem similarly (see [5]).
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Figure 8

Unfortunately generalization of our algorithm to some cases
such as that of the two phase problem, seems not to be so
straightforward. However, as we have mentioned other algorithms
based on the direct determination of the free boundary could be
efficiently used 1in such cases, provided that good methods for
édjusting the spacial mesh step by step are available. Indeed,
one of the main features of our triangulation method 1s generat-
ing triangles whose angles remain reasonably bounded away from
zero, or, in other words, approximately equal. In so doing the
number of nodes of the mesh necessary to attain a given precision
can be minimized and computer time saved.

So, generally speaking, we think that our work could be a
starting point for research on the application of automatic
discretization processes to the direct solution of two or three-
dimensional free boundary problems. This 1s because we also
believe that with this work we have helped to ccntradict the
long-prevailing opinion, that this approach 1s inadequate to the

numerical solution of such problems.
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Error Estimates for the Lumped Mass Approximation

of the Heat Equation

By Teruo USHIJIMA

January 1979

Introduction.

In this paper error estimates for the lumped mass approximation
of the inhomogeneous heat equation with zero Dirichlet boundary
condition are considered. Generally the error is dominated by
the term caused by the lumping effect. It is, however, bounded by
the term having the same order as in the case of consistent mass
approximation if the triangulation poseses the local symmetric
property, which is a kind of regularity of triangulation, being
defined in 81 of this paper. Here we restrict our consideration
to a semi-discrete approximation séheme. Namely we adopt a system
of ordinary differential equations as an approximate equation.

It may be well-known that the error is O(h) in the lumped mass
approximation for the heat equation. And classical analysis teaches
us that the error is O(h?) in the usual difference scheme using |
five point differnce approximation of A, whereas this difference
scheme can be regarded as a special case of the lumped mass
approximation scheme, as was shown by Courant [4]. Original
motivation of this work is to give a persuasible explanation of
this discrepancy. |

An idea of division of error term into two terms is essential.
The first term represents the error of Ritz projection, which

already appeared in the consistent mass approximation. The second
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term is proper to the lumped mass approximation, which is dominant;
in general, being O(h) with respect to mesh size h. In the case of
local symmetric triangulation, the estimate for the second term is
improved up to O(h?), so that the first term is principal.

In §1, after giving formulation of the problem, we state main
result concerning L2%-estimate in Theorem 2. An abstract routine
to treat the error estimation is constructed in §2. §3 is devoted
to prove Theorem 2. 1In §4, L”-estimates are driven as applications
of our abstract routine.

As for Lw-estimates, similar results to us have been obtained
by Tabata [8] (see also [9]). He regards the lumped mass scheme
as a finite difference scheme defined on an irregular mesh.
In comparison with his method, this paper may be considered to
describe an operator theoretical approach of the lumping method.

The author expresses his sincere thanks to Professor Kikuchi
of Institute of Space and Aeronautical Science, University of Tokyo
for his valuable advices and discussions during the preparation of

this paper.

§1. Statement of the problem and L%-estimates.

We consider the following continuous problem (g).

giz%"x—)‘“(t»x) = £(t,x), (t,x)€(0,T]xQ,
(¢)

u(t,x) 0, (t,x)e(0,T]xT,
u(0,x) = a(x), xe€Q,
where Q@ is a bounded convex polygonal domain in n-dimensional

Euclidean space R" with its boundary T', and f(t,x) and a(x) are given
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known functions.
Let us denote the inner product of L2(Q) by ( , ). Namely
(u,v) = fQu(x)v(x)dx for u,vel?(Q).

Define the inner product a( , ) of V = Hé(ﬂ) by the formula:
n du dv
= pX f .
a(u,v) 351 (gfj,gij) or u,veV

Then there is a unique selfadjoint operator A in L?*(®) with its domain
D(A) satisfying the following properties from (1.1) to (1.4):
(1.1) D(A) = {veV: AvelL?(Q)},
(1.2) Av = -Av for veD(A),
(1.3) bp@al/?) = v,
(1.4) a(u,v) = (Au,v), for ueD(A), veV.
As is well known,
D(A) = H} ()aH? ()

holds since @ is a convex polygonal domain (see Kadlec [6]).

As usual, we seek the solution u(t,x) of (g) as the solution
of the following variational forhulation () of (g), or operational

formulation (E) of (&).

S (u(t),v)+au(t),v) = (£(t),v), O<tST, vev,

(M | uct)ev, o<tsT,
u(0) = a.

dult) o au(e) = £(1), t0,

(E)
u(0) = a.

Following Fujii [5], let us formulate the lumped mass
approximation method. Let positive numbers h be indices. Assume

that there is a triangulation :7£ = {T: simplex, diam(T) S hl}of @,
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and that the family of triangulations {f7h:h>0} is regular in the
sense of Ciarlet-Raviart [2]. Namely there is a positive constant
o satisfying that

h(T)/e(T) £ o for Te, h>0,
where h(T) is a.diameter of T and p(T) is a diameter of the inscribed
sphere of T.

Now we set our approximation space Vh of V as follows.

V, = (v eC@) : vl =0,

vylr € Py for any chjh},
where C(R) denotes the space of continuous functions on U, and vIS
denotes the restriction of the function v to the set S, and Pk denotes
the totality of polynomials with degree at most k. A vertex of dei
is said to be a nodal point. Let us count the interior and the
o 2nd Dyigs Dyygs oo
bN+M’ respectively.. There exists uniquely a set of functions

boundary nodal points of Q as bl’ bZ’ ***, b b
{wj : 15jEN+M} with the properties:

wj € C(ﬁh),
wle e P; for any Tefjh,
wj(bk) = ij.
Clearly {wj: 15jSN} forms a basis of V;. Let S5 be the support of
wj, and let Bj be the lumped mass region corresponding to the nodal
point bj’ (For the definition of lumped mass region, see, for
example, p479 of Ushijima [10].) The characteristic function of Bj
is denoted by Wj. Let V; be the linear space spanned by the set of
functions {Wj : 1£jSN}.  The lumping operator L, from V, onto Vh

is defined as the linear mapping naturally generated by the

correspondence: wj—~* Wj. Namely we have
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=z

— N
1 ijj forlvh = L4 V.w.th,

L,v, = .
h"h j
Let K, be the inverse of L,. The spaces V, and V; being closed
subspaces of L?(Q), we can define adjoint operators L,*, and K *,
from Vh onto V,, and from V, onto Vh, respectively, inner products
of these spaces being induced from L?(Q). It holds that
(Lh*Vh,uh) = (Vh,Lhuh), Vhth, u vy,
and that
(Kh*vh,ﬁh) = (Vh’Khﬁh) VLEVL ﬁhth.
Let Ah be a linear operator acting on Vi defined by the formula:
(Ahuh,vh) = a(uh,vh), uh,vhth.
We say that Ah is the Galerkin approximation of A. Clearly Ah is
a bounded positive self adjoint operator in the space Vi Define

~

a bounded linear operator Ah acting on Vh by the formula:

~

A = KhKh*Ah.

Let us denote by my the linear interpolation operator from C(R)

onto Vh. Let Plh be the orthogonal projection from V onto Vh with
respect to the inner product a( , ), which is called Ritz projection,
sometimes, and let POh’ and P , be the orthogonal projection from
L2(Q) onto Vh, and Vh, respectively, with respect to the inner
product ( , ).

Our approximate problem {ﬁh) can be written as follows.

Te (Lup (), Levy) + aluy (),v) = (L £, (£),Lvy),

0<t=sT, v, eV
— h h’
(1, )

u, (t) eV 0<tsT,

h,
uh(O) = A,
where fh(t) is a Vh-valued'function, and a, is an element of V-

This problem (ﬁh) is equivalent to the following Vh—valued evolution
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equation (ﬁh)

- du () 4 Ru () = £(1), 0,
(E,) .
uh(O) = a;.

Definition 1. A triangulation f7£ is said to be locally

symmetric if Sj is symmetric with respect to b1 for any interior
nodal point bj (12j5N), namely, if it holds that
-(S;-b.) = S.-b., 13j3N.

(S5-bs) = S,-by, j

It is noted that wj(x+bj) is an even function of x if
the triangulation is locally symmetric.
Two typical examples of locally symmetric triangulation in

2-dimensional case are illustraled in Fig, 1 and 2.

h ~ ' N h

F
o

/1

Fig. 1 Fig. 2

In both examples, we obtain the stiffness matrix corresponding to
usual five points difference formula for -A. As for mass matrices,
the matrix element of the point P is hk, where as that of Q, and R,
are 4/3hk, and 2/3hk, respectively. |

Theorem 2. Let 2 be a bounded convex polygonal domain in R"

where n33. Assume that {7J,:h>0} is regular. Then there is a
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constant C, which may depend on T, with the property that the estimate

max

max Ju max
Cozest (el ymgy*ogest I 52!l ameay*ogest | £C) 1 gm(gy)

A

- c{n™

1l ap-Prpall p2 gy *osesr | En (D -£CO) ] 12 o)
holds for the solution u(t) of (E) and the solution uh(t) of (Eh)

provided that u(t)eD(A1+m/2), %ﬁ (t)eD(Am/z), and that f(t) is so
smooth that the quantity of the right hand side may be meaningful.

Here we can put m=2 if is locally symmetric for any h, whereas
h

m=1 in general case.

§2. An abstract theory for error estimation.
Now we consider the following five conditions.

Condition I. There is a Banach space X satisfying that

L2 ()2 xav

h.

Condition II. There is a Banach space Y contained in X and

V, and a scalar function €(h) such that

I Pyv-vil g S el vily, vey.

Condition II. There is a Banach space Z contained in X; and

a scalar function &§(h) such that
Il KnKn*PonV-vil x s s(h) || vl 5, veZ.

Condition NV . There is a constant Mo satisfying

-tA
I| e hvhllx S Moll Vil x»  OStST, v, eV,.

Condition V, The solution u(t) of (E) satisfies

u(t) € YaD(A), Au(t) € Z, and 9%%31 €Y

for any te[0,T].
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Theorem 2. Under conditions from I to V, we have the folloﬁing

estimate with a suitable constant C.

osestll up (8)-u(e) Il 4

9
$ cle) (pLegpll ue) Il y+ossrll 551 v

+8(h) ggpsr!l AUt | g+ |l ap-Popall x+ Si%oll £-£11 43
Proof. Let rh(t)=P1hu(t). We have

(2.1) A1y = K K *P), Au,
. . -1 d LS _
since rh—Ah POhAu. Let g, Hf(uh rh)+Ah(uh rh), then we have
(2.2) = (f.-f)-(P,, 2% . 3% _ (g K *P__ Au-Au)
. &h h 1h3t ~ 3t h“h ' 0h .
In fact, by (Eh) and (2.1),

d -~
£ T h AnTh

gh ©
- _ 8_1_1__ '
= £ Pingt - KpKp"Popfu
- - su ou - . AD
= f-Pipse o5t Au - £ - KpK RPGLAuL

Therefore the function e, =up-Th is the solution of the following

evolution problem (2.3).

d X - <<
(2.3) { Itch * An®h = 8n 05T,
eh(O) = ap - Plha’
By Duhamel's principle we have
-tA -(t-s)A
(2.4) e (t) =ce t heh(O) + ﬁf e (t s)Ahgh(s) ds.
Substituting condition O, T, V into (2.2), we obtain
9
g ()1 g S I £-£11 yre () ] 3201 y*6 () || Aull 4.
Therefore (2.4) and Condition IV imply the following estimate
ey ()11 y S Myll ap-Ppyall

9
+MoT (Il £ -£1] yre () 1] 51l y+8 (M) || Aull ).
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On the other hand, Condition I implies
Il (8)-u(e) l x = Il Ppyuce)-ule) || x
$emlue)ll .

Thus the conclusion of Theorem 3 follows from the triangular inequality:
Il u, () -ue) |l ¢ & [l up () - () ] g+ rp (B -ue) || -

Corollary 4. Adding conditions from I to V, assume further

that Y is a closed subspace of Z. Then we have the following
estimate with E=max(e,6).

02221‘“ uh(t) -u(t) “ X

~ max max ou max
S Cle() (ogegrll Ol z*ogeerll 5ell z*osesr!l £l 2
max
I ap-Prpall x*osesrll £4-£ll 1

Proof. Substitute Au-f-%% into the‘estimate in Theorem 3.

§3 Proof of'Theorem 2.
First we prepare some Propositions.

Proposition 5. For any pe€e[l,~], operatofs P, thh and

Kh*POh can be considered as operators from Lp(Q) to Lp(ﬂ) with their
norms not greater  than 1.
Proof. See Proposition 2.1 of Ushijima [10].

Proposition 6. For any pe€[l,«], there is a constant L=L

p,n
independent of h such that

“ thh“ LP(Q) : L“ Vh“ Lp(Q) ’ Vh€\/h.

Proof. See Proposition 2.2 of Ushijima ([10].

Proposition 7. .For aeC(R), we have
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N1
= jél{ﬁTEET Q%(a(x)-a(bj))wj(x)dij},
where m(Bj)=fBjdx.

Proof. Noticing the orthogonality relation:

(wj :Wk) = ijm(Bj),

we have
K, *P.,a = g 1 Jo a(x)w. (x)dxw
n"Fon® = jhimce;y ’s; j Wy

On the otherhand,
N
Ma = jgla(bj)wj
N 3
= jglﬁfﬁgT fsja(bj)wjdij,
where we use the equality:
m(Bj) = fsjwj(x)dx.
Therefore we have the conclusion.

The proof of Theorem 2 for m=1 is summarized in the following
Proposition.

Proposition 8. Let X be L?(R), and let Y and Z be V. Set

MO=L2 n’ Then the conditions from I to  hold with suitable scalar
’
functions €(h) and 8§(h) which behave O(h) as h tends to 0.

Proof. Condition I is trivially valid. By a standard error
estimation method for elliptic problem, we have
(301) “ Plhv_vll L2 (Q) s Ch“ V” HI(Q)’ VCV,
which assures condition II (see Ciarlet [1]). Set vh=P1hv for vev.
By definition of Plh’
(3.2) I Vh” v Sl vl Ve
Since || v|| =1l vv|| L2 () is equivalent to || v|| H' (Q) * (3.1) implies

(3-3) ” Vh-vll L2 (Q) S Ch” V” '
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Noticing Hhvh=vh, we have
* -
Ky PonVh Lnn
= (by Proposition 7)

N 1 —
gjgl{ﬁfﬁgT fsj(vh(x)-vh(bj))wj(x)dij}

N 1 B
’j§1{ﬁT§§T fsj(x-bj,Vvh(x))nwj(x)dij},
for vh(x) is piece wise linear on Sj’ where (C»b)ﬁ means the Euchidean
innér product of a,béRn. Therefore

2
Il Ky *Pop vy, Lpvp |l

N 1 2
= j§1$?§§71fsj(x-bj,Vvh(x))nwj(x)dxl
< 1.2 N 1 2
S 0%k j fsj|vVh| dxm(S;)

A

2
W2 e 1) 21| v Il 2 0y -
Hence (3.2) implies
(3.4) || Kh*POhvh-thhIILz(Q) $ (n+D)h|| v|| y .

Using Proposition 5, we have

Il KyKp *Popv-vil L2 g

WA

Il (KK * Py -1 (v=vp) Il 2 gy * I KKy *Pop vy -vill p2 gy

A

2|l v=vp Il L2 cqy* Il Ky *Popvip-Lypvpll L2 (q)

7N

(by (3.2) and (3.4))
Chil vl -

n

Thus Condition II is established. Now let Kﬁth*AhKh‘ Then Kh is

a positive self adjoint operator acting in Vh. So we have

-tAh— — - =
Since e'tAh=Khe'tKth,
-tRh
” e Vh“ LZ(Q)
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N

(Proposition 5)

I Lpvpll L2 o

HA

LN

Lyl vill L2 gy -

Therfore Condition IV holds with M0=L2 0
}

The following Proposition completes the proof of Theorem 2 for

Proposition 9. Assume fjh be locally symmetric. Let X be LZ(Q),
and let Y and Z be Hé(n)nHz(Q). Then Conditions II and II hold

with some scalar functions e(h) and §(h) which behave O(hz) as h

tends to 0.
Proof. By a standard argument, we have
2 _ul 2
(3.5) ” Pth'V” L2 (Q) =-<. Ch “ V“ H2 (Q) ’ VGD(A)_Ho(Q)nH (Q) ’
(see Ciarlet[1]). This gives Condition I . To prove Condition II,

first we note that Hhv is well defined for veHZ(Q), for HZ(Q)CC(ﬁ)
holds by Sobolev imbedding Theorem since we assumed ni3.
And we have

2 1 2
(3.6) Il myv-vil p2 gy = ChT{l vl 2 gy for veH;(2)aH (%),

(see Ciarlet [1]). Now we admit the following estimate (3.7)
for a while.

- < 2 2
(3.7) || K *Pop v LhnhvliLz(Q) $ Ch ||v||Ha(Q), veH" (Q).
Then we have for vcHé(Q)nHZ(Q),

I KpKp*Popv=vil 12 g

nA

Kl Lenz o)) 1 Kn*PonV-EnMn Vil L2 coy* I Thv-vil 2 (g

HA

(by Proposition 5, (3.7), and (3.6))
2
Ch H VH Hz

HA

Q)

)



This gives Condition II.
Now we proceed to establish (3.7). Proposition 7 implies

(3.8) Il Ky *P

N -
=i ﬁr%;ylfsj(u(x)’u(bj))wj(x)dxlz-

2
onV-LpTVIl "Lz (q)

Let E=X-bj, uj(E)=u(€+bj), W(€)=wj(E+bj) and S=Sj-bj. Then we have

U(X)‘U(bj) uj (&) 'uj (0)

(Vu; (0),8) +f5 t(D?u, (tE)E,E) dt,

where Dzuj(g) the following nxn matrix:

D2u, (8) = (ol _ (£+b,))
j 5xj5xk j77155 ,ksn

Since S is symmetric with respect to the origin, we have
fsj(u(x)-u(bj))wj(x)dx
= Jg(u;(€)-u,;(0))w(E)dE

= Uy t((D%uy) (tE)E,E)dt)w(E)dE

HA

fotUgll D2uy (te) [l gl €1l gt dE)dt

(by Schwartz inequality and || £|| Sdiam(s)/2)
. 2.1 2 1/2

(diam(s)/2)“Jyt|| D Uj(tE)“ L’(S)dt m(S)

HA

HA

- hZnes) 2t ™ 2 p2ug o) Il
th(S)l/Zfltl—n/ZH DZ

(ts)dt

HA

u' (&) ” L2 (s) dt

1/2

= n’n(s) M 2%l pul| LICRY

Substituting this estimate into (3.8), we have
*
Il Ky POhv Ly vl Lz(n)
2 .2 m(Si)
(75 ‘n’ jE 1 m(B;Y Il p?ull 12(5 )

(n"'l) ('["—Tl') h ” D u” L2 (Q)

HA

A
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This assures the validity of (3.7).

§4. L”-estimates for nonnegative triangulation.

Since we have prepared our abstract theory aiming a general
purpose routine, we can automatically obtain some L”-estimates
gathering already established results if the triangulation is
restricted to be nonnegative. Following Ciarlet-Raviart [3],

the triangulation f7h is said to be nonnegative ifrand only if it
holds

(4.1) a(wi,wj) 20, for i#j, 1SiSN, 15jSN+M.

In 2-dimensional problem, (4.1) is equivalet to the requirement
that all the angles of triangles T of ffh are not greater than 7w/2.
Following Fujii [5], this triangulatioﬁ is said to be of acute type.
Throughout this §, triangulations are assumed to be nonnegative.

Let X=L"(2), Y=W2*®(Q)V and z=W}**(Q),V. Then Condition I is
trivially satisfied. Due to Ciarlet-Raviart [3], the following
estimate (4.2) holds.

(4.2) ||P1hv—v||Lm(Q) S Ch||v||w2,w(ﬂ), for veWw?’”(Q)aV.

This implies the condition II with e(h)=0(h){ Proposition 7 assures
(4.3) I KhKh*POhv-Hhvlle(Q) S h|| vl Wi ()

Moreover mean value theorem implies

(4.4) || mpv-v]]| L™ (2) s h[lvllwl,m(g), veW T (Q)aV.

Condition I with 8(h)=0(h) follows from (4.3) and (4.4). Due to
Fujii [5], we have

(4.5) |l e tRh g Loy = Il p=ggy, 20, vpeVy.
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(See p487 of Ushijima [10]. It is noted that the nonnegativity

of triangulation is essential to establish (4.2) and (4.5).)

Since e'tAh=Khe'tAth,
Il e'tAhvhlle(n) s (Proposition 5 and (4.5))
<
= 1 Lpvpll 1=y
I Vh” L (Q)
holds for Vhth. Thus Conditions IV with M0=1 holds good.

Hence Theorem 3 implies the following result.

Theorem 10. Let Q@ be a bounded convex polygonal domain in R"

with arbitrary n. Assume that the triangulation fj; is nonnegative

for any h. Then there is a constant C with the property that the

estimate
m
osestll Up(B)-u() Il 12 (g
max max
s C{h(o t<T” U(t) ” wz ,Q(Q) 0§t<T” ” w2 300(9)

*osestll £ I yasm(g)) Il ay-Prpall =g

+osestll £yl 1=y}
holds for the solution u(t) of (E) and the solution uh(t) of (Eh)
provided that u(t)cH (n)nw (ﬂ), Au(t)eHO(Q)nW (Q) and
ou

2 eHg () WP T (R), 0StET

A result of O(h)-convergence of this problem is already obtained
by Tabata [8].
It is also possible to utilize the recent result of L -estimate

for the stationary problem due to Nitsche [7]. We restrict our
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problem to the 2-dimensional case, and assume further that our family
of triangulation {f7h:h>0} satisfies the inverse assumption.

Namely there is a positive constant v satisfying that

(4.6)  hSvh(T)  for Te 7} ,h>0.

Then Nitsche proves the following estimate (4.7):
2
(4.7 ” Plhv'V” L®(Q) s Ch llog hl ” V” W2»°°(Q)

provided that vthWZ’w(Q).

Theorem 11. Let Q be a bounded convex polygonal domain in R?.

Assume that the family of regular nonnegative triangulation
{ffh: h>0} of ? satisfies the inverse assumption (4.6), and that f7h
is locally symmetric for any h>0. Then there is a constant C with

the property that the estimate

ngngluh(t)‘u(t)lle(g)

2 ax - )
$ C(h”|1log hl(ogegrll ultd Il yaseogy*osesr !l 5ell w2 r=(a)

+02?§(T” £0t) || 2 ,oom))'*“ ah-PlhaH L ()

*osestil FpoEll oy b

holds for the solution u(t) of (E) and the solution uh(t) of (Eh)

provided that u(t), Au(t), J¥(t)eHj(@)aW?*™(2), 0StsT.

Proof. Let X=L*(Q), and let Y and Z be D(A)aW’’®(Q)
=Hé(n)nw2’“(n). Then Condition I is trivial. Condition I follows
from (4.7) and Condition W with'M0=1 is already shown.

Condition N is also proven by a step by step modification of the
proof given in Proposition 9. Namely instead of (3.6) and (3.7),
we have

1 2,
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) 2 2,0
(4.9) IIKh*POhv-LhHhVIILm(g) s Ch IlVl[wz,m(Q) for veWw“’>*(Q).

Corollary 5 implies the conclusion of Theorem.
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