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On a three-point difference scheme for a singular perturbation 

problem without a first derivative term. I 

By 

Koichi Niijima 

1. Introduction 

Let £ be a parameter satisfying O<£~l and consider 

the boundary value problem 

£y" - b(x,£)y = f(x,£), 

yeO) = aO' yell = aI' 

O~x~l, (l.la) 

(l.lb) 

where b(x,£) and f(x,£) are twice continuously differentiable 

with respect to x on D={(x,£)IO~x~l, O<£~l}, and bounded there 

together with their first and second derivatives with respect 

to x. Assume further that b(x,£)~o>O in D. 

Recently, J.J.H.Miller [2] derived an exponentially 

fitted difference scheme for the problem (1.1), and showed 

that the solution of this scheme converges to that of (1.1) 

uniformly in £ with order h which denotes a mesh step. 

In the present paper, we give a three-point difference 

scheme whose solution converges to that of (1.1) uniformly in 

£ with order h 2 . J.J.H.Miller [2] employed the method of 

A.M.Il'in [1] in constructing his difference scheme and in 

proving the uniform convergence, but we use the Liouville­

Green transformation which makes easy the error analysis. 
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2. Approximation to the problem (1.1) 

We begin with approximating b(x,E) and f(x,E). Let us 

introduce the uniform mesh x.=ih, i=O,l,.~.,N, where Nh=l, 
J. 

and approximate the functions b(x,E) and f(x,E) in each_sub-

interval [xi,xi+ll, respectively, by 

B(X,E) 

and 

x - xi 3 
(a. h +()..) , 

J. J. 

where (). . , a. and f. denote 
J. J. J. 

1/4/b (x. , e:) ().. = , 
J. J. 

a. = ().i+l - ().. 
J. J. 

and 

f. = f(x.,e:), 
J. J. 

respectively. We remark that such approximating functions 

are determined from the Liouville-Green transformation 

appearing later on. 

Consider the following approximation problem to (1.1) i 

EY" - B(x,e:)Y = F(X,E), (2 • .La) 

Yeo) = a O ' Y(l)= a l . (2.lb) 
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Then we can prove 

Lemma. Let y(x) and Y(x) denote solutions of (1.1) 

and (2.1), respectively, and let \I 01100 denote a maximum norm. 

Then there is a constant C, independent of hand £, such that 

(2.2) 

Proof. We first note that B(x,£) and F(x,£) are 

continuous functions on D. Define rex) by r(x)=Y(x)-y(x). 

This rex) satisfies 

£rn - b(x,£)r = (B(x,£) - b(x,£»Y + F(x,E:) - f(x,E:) 

and 

reO) = r(l) = O. 

Since b(x,E:)~o>O, the maximum principie assures that for a 

constant Cl independent of hand £, 

Accordingly, it suffices to show that there are constants C2 

and C3i independent of hand £, such that 

and 

The first estimate follows from the Taylor's theorem. Indeed, 

B(x,£) - b(x,E:) = -( h4 b. 5/ 4S.+b.') (x-x.) + O(h2 ) 
1. 1. 1. 1. 
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for xi~x~xi+l and O<£~l. To get the second estimate, we set 

g(x,£)=f(x,£)/b(x,£)3/4. Then F(x,£) can be written as 

F(x, c) = B(X,c)3/4{( B(x,£) 1/4 ~ ( » ~ ~ b( » (g(x'+l,£)-g x.,£ x i +l '£ 1 1 

A further estimation yields 

x - X, 
1 

h 
+ g (x. , £) } , 

1 

x-x. 
h 1 + g (xi ' £ ) ) 

3/4 x - xi 
= b(x,£) (g(xi+l,£)-g(x i ,£» h + g{x i ,£)] 

Since the bracketed term of the right hand side gives a linear 

interpolation to g{x,£), we finally have 

F(x,£) = b(x , £)3/4(g(X , £) + O(h2 >] + O(h2 ) 

= f(x,£) + O(h2). 

This completes the proof. 
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3. Construction of a difference scheme 

In this section, we show by applying the Liouville-

Green transformation to (2.la) that its solution Y(x) can be 

constructed in each subinterval [xi,xi +l ], and derive a three­

point difference scheme between Y. 1= Y(x. 1)' Y.= Y(x.) and 
1- 1- 1 1 

In the subinterval [xi,xi +l ], we change the equation 

(2.la), by using the Liouville-Green transformation 

into 

2 d v. 

v. = \jJ. (x) Y (x) , 
~ 1 

z = <p, (x) , 
1 

1 E 
E -:--r + ~ 

\jJ. I dv. 
( <p. II _ 2 __ 1 A.. I ) 1 

dz <p, I 
1 

1 \jJ. '1'1 dz 
1 

1jJ.1 \jJ1" 2 
1 { B (x , E) + E « _1_), - ( -;;;--) )} v . = 

- ~2 1jJ. '1" l. 
'1'1 1 1 

1jJ. 
1 

--2 F(x,E). 
<p . I 

1 

(3.1) 

We determine \jJ. (x) and <p.' (x) so as to satisfy the equations 
1 1 

and 

1jJ, ' 
<p ,"= 2 __ 1 <p ' 

1 1jJ. i 

1jJ. ' 
( __ 1 ) '= 

1jJ, 
1 

1 

1jJ. I 2 
_1 ) 

1jJi 

which can be resolved analytically. Indeed, we get 
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and 

~). (x) = 
~ 

<j> i I (x) = 

1 

1 (3.2) 

where d 1 and d 2 are constants. It is easily seen that the 

for x.~x~x'+l. 
~- - ~ 

Let <j>(x) be a function obtained by solving (3.2) 

successively and by connecting these functions each other 

at the nodes x.. It is not hard to verify that 
~ 

x-x. 
<!>(x) = <!>(x.) + ~ 

~ (l·(8·(x-x.)/h+(l.) 
~ ~ ~ ~ 

This shows that <!>{x) is continuously differentiable and 

monotonically increasing on [0,1]. Hence the equation z=<!>(x} 

has an inverse x=<!>-l{z}. Thus the equation (3.1) can be 

written as 

2 
d v. 

~ 

E dz 2 - vi = 

whose solution takes the form 

(3.3) 

Vi{z) = K1exp«z-<!>(xi»/!E)+ K2exp(-(z-<!>(x i »/!Z)+ wi (z). 

(3.4) 
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Here wi(z) denotes a particular solution of (3.3). Since the 

explicit form of w. (z) is not required now, we carryover its 
1 

calculation later. Using (3.4), the solution Y(x) of (2.la) 

in the subinterval [xi,xi +l ] is expressible in the form 

Y(x) = v i (4)(x))I1JJ i (x) 

S. 
= -( h 1 (x-x.)+a.){Kl exP«4>(x)-4>(x.»/IE) 

1 1· . 1 

+ K2exP(-(4>(x)-4>(x.»/I£)+ w. (4) (x» }. 
1 1 

(3.5) 

To derive a three-point difference scheme between Y. l' Y. 
1- 1 

and Yi + l , we represent K1and K2 by Yi and Yi + l • This is 

accomplished by solving a system 

and 

where T.= exp(p/a.a.+ l ), p= hllE and w .. = w. (4)(x.)). 
1 1 1 1,J 1 J 

The solutions Kl and K2 are 

Kl 
1 1 1 1 T. ) = (--- Y.+ Yi+l+wi,i+l"'" T w. ·)/( a.T. 1 a i +l . 1,1 T. 1 

1 1 1 1 

and 

T. 1 1 
K2 

1 Y.- Yi +l - + T.w . . )/( T . ) , = w. '+1 -a. 1 a i +l 1,1 1 1,1 T. 1 
1 1 
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respectively. 

In the (i-l)th interval [x. l'x.], we repeat the same 
~- ~ 

discussion. That is, we set 

Y (x) 

and represent Ll and L2 by Yi - l and Yi • We find at once that 

Ll and L2 are obtainable by replacing the index i appearing in 

Kl and K2 , respectively, by i-I. 

It remains only to connect the first derivative of Y(x) 

in (3.5) with that of Y(x) in (3.6) at the node x .. 
~ 

After a 

careful computation, we obtain 

o. 1 ex. 1-2a.+a .. 
~- Y. 1 + {~2(coth(O. l)+coth(O.»- ~+ a ~ ~-L} 

sinh(cr i _ l ) ~- a i ~- ~ i 

where 0.= p/a.a'+ l and 
~ 1 1 

G. 
1 

.Yi - sinh(o.) Yi + l = 
~ 

G. , 
J 

G . = p { 1 th ( 0 ) w . h ( ) w. 1 . 1 - co . 1 . 1 . ~ a. Sln o. 1 1-, 1- ~- 1-, ~ 
~ ~-

1 
- coth(Oi)Wi,i + sinh(O.) Wi,i+l 

1 

dw. 1 . 
1- ,1 

+ IE( dz 
c1w. . 

1.,1 )1 
dz 

- 8 -
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To calculate G., we seek w. (z). Note that 
1 1 

3 + a. f.} 
1 1 

which follows from the definition of F(X,E). Since the right-

hand side is a linear function of z, we easily get 

This makes possible the calculation of G.. Indeed, G. is given 
·1 + 

by 
3 

a i - l 
) f. 1 a. 1-

1 

2 3 
-{p(coth(a.l)+coth(a.»a. - (a. l+a.+l)C/.. }f. 

1- 1 1 1- 1 1 1 

3 
4 p <X i +l 

- ( a i + 1 - sinh ( a . ) a . ) f i + 1 • 
1. 1 

Summarizing the results above, we have 

Theorem. At all points of the mesh, the solution of 

the scheme (3.7) subject to YO=a O and YN=a1 converges to that 

of (1.1) uniformly in E with order h 2 • 

- 9 -



References 

[1] A.M.Il'in, Differencing scheme for a differential 

equation with a small parameter affecting the highest 

derivative, Math. Notes Acad. Sci. USSR 6 (1969) I 

596-602. 

[2] J.J.H.Miller, On the convergence, uniformly in E, of 

difference scheme for a two point boundary singular 

perturbation problem, Proc. of Conf. on .. The numerical 

Analysis of Singular Perturbation Problems" Academic 

Press (1979), 467-474. 

- 10 -



On a three-point difference scheme for a singular perturbation 

problem without a first derivative term. II 

By 

Koichi Niijima 

1. Introduction 

This paper is a continuation of our recent work [2]. 

In [2], we derived a three-point difference scheme for a 

singular perturbation problem of the type 

£y" - b(x,£)y = f(x,£), O~x~l, 

yeo) = a o ' y{l) = a 1 , 

(l.la) 

(l.lb) 

where £ is a parameter satisfying 0<£~1. And we proved by 

making some assumptions on b(x,£) and f(x , £) that the solution 

of this scheme converges to that of (1.1) uniformly in £ with 

2 order h , where h denotes a mesh step. In deriving such a 

scheme, we utilized the Liouville-Green transformation which 

also played an important role in the proof of the uniform 

convergence. 

In the present paper, a three-point difference scheme, 

whose solution converges to that of (1.1) uniformly in £ with 

order h 3 , is derived under some conditions slightly stronger 

than those in [2], when £ satisfies O<£~£O for small £0. 

The derivation and the proof of the uniform convergence will 

be done by the use of another Liouville-Green transformation 

containing three free parameters to be determined. This 
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transformation can be obtained by solving some differential 

equations analytically. But since the resolution is not so 

easy, we shall state its process in Appendix. 

In final section, several numerical experiments are 

performed with the schemes of Miller [1] and of Niijima [2] 

as well as a new one, and the accuracy of the computed 

solutions is compared each other. 

2. Approximation to the problem (1.1) 

The functions b(x,E) and f(x,E) are assumed to be three 

times continuously differentiable with respect to x on 

D={(X,E) IO~x~l, O<E~EO} , and to be bounded there together 

with their derivatives with respect to x up to third order. 

Moreover, we assume that b(x,E)~o>O in D. 

Let N be a positive integer and define a mesh step h 

by h=l/N. 

i=O,···,N. 

And we denote equidistant mesh points by x.=ih, 
~ 

In the subinterval [xi,xi +l ], the functions b(x,E) 

and f(x,£) are approximated now by 

B(x,£) 

and 

F(x,£) 

(2.l) 

respectively. Here a., 8. and y. denote, respectively, 
~ ~ ~ 
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and 

in which di=l/Ib(xi,e:) and xi+l/2=xi+h/2. Also, </>(x) is a 

fun'ction de fined by 

</>(x) = </>(xi +l / 2 ) + r x IB(t,e:)dt 
J x i +l / 2 

for x.,x~x'+l' and p., q. and r. are 
~ - ~ ~ ~ ~ 

k (i)k (i) (k (i) -k (i)) 
122 1 

and 

(2.2) 

-3/4 (i) respectively, where gi=b(xi,e:) f(xi,e:), kl =</>(x i )-</>(xi +l / 2 ) 

(j) 
and k2 =</>(xi+l)-</>(xi+l/2). For later use, we note that 

the function z=</>(x) has an inverse x=<I>-l(z) because the 

former is continuous and monotonically increasing on [0,1]. The 

functions B(x,£) and F(x,£} defined above approximate to 

b(x,e:) and f(x,e:) I respectively, with order h 3 uniformly in E. 
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This will be proved in next lemma as a preparation for 

establishing the estimate 

max IY(x) - y(x) I ~ Ch3 , 
O~x~l 

where Y(x) is a solution of 

EY" - B(x,£)Y = ~(X,E), 

yeo) = aO' Y(l) = aI' 

and C is a constant independent of h and E. 

Lemma. The estimate (2.3) holds. 

(2. ~) 

(2.4a) 

(2.4b) 

Proof. We find from the definition of B(X,E) that the 

quadratic function ai(x-xi+l/2)2+Bi(X-Xi+l/2)+Yi interpolates 

to l/lb(x,E) at the nodes xi' x i + I / 2 and xi+l" Therefo~e, 

We thus have 

3 
B(X,f.) = b(x,e:) + O(h ). 

In the next, we show that 

F(X,E) = f(x,E) + O(h3 ). 

We first have, by virtue of (2.5), 

1 

Ib(x,e:) 

(2.5) 

3/4{ 2 F(x,e:) = b(x,E) Pi(<!>(x)-CP(x i +l / 2 » + qi(<!>(x)-CP(xi +l / 2» 
. 3 

+ r.} + 0 (h ). 
1 

Applying the Taylor's theorem to the expression in the braces, 
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we obtain 

b(x,e:) -3/4F (x,e:) =·r + q A-. , (x ) (x x ) 
i i~ i+l/2· - i+l/2 

+ 0 (h 3 ) 

q. 2Pi-Biqi )2 
= r i + y~(x-xi+l/2)+ 2 (x-x i +l / 2 

~ 2y. 
1. 

(2.6) 

Since the same theorem leads to 

k (i) h B. 2 
+ O(h3 ) = - 2y. -

_1._ h 
1 2 

~ Sy. 
1. 

and 

k (i) h B· 2 
+ O(h 3), = 2y. -

_1._ h 
2 2 

~ Sy. 
I 

we have 
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Similarly, we have 

Substituting these p. and q. into (2.6) yields 
~ ~ 

gi~1/2 2 3 
+ 2 (x-x i +l / 2 ) + O(h ) 

= g(x,£) + O(h3). 

From the definition of g(X,E), we finally get 

The proof of (2.3) can be done in the same way as in 

Lemma of [2]. 

3. Construction of a difference scheme 

The definition of B(X,E) and F(X,E) shows that these 

functions are continuous on D, and that there exists a constant 

0' such that B(X,E) ~ 0'>0 in D. Therefore, the problem (2.4) 

has a unique solution Y(x) which is twice continuously differ-

entiable on [0,1]. 

Now, if we apply the Liouville-Green transformation 

v.= 1/1. (x)Y(x) , 
~ ~ 

z = <1>. (x) 
~ 

(3.1) 

to (2.4a) in i th interval [xi,xi +l ], then (2.4a) changes into 

- 16 -



2 
d v. 

e: 1. + e: 
dT ;7 

1. 

" 
4>. 

1. 

1/J.' ,dv . 
1. 1. - 2- 4>. )-1/J i l. dz 

- i 2 
1 1/J.' 1/J.' 2 

{B(x,e:)+ e:«-.!. )'_(.2:. ) )}v. = 
1/J. 1/J. 1. 

1/J. 
1. --r'2 F (x, e:) • 

4>. 
l. 

l. 1. 4>. 
l. 

(3.2) 

We determined, in [2],. 4> . 
l. 

, " 1/J.' 
and 1/Jl.' so that 4>. - 2.2:. 4> ' and 

1. 1/J. i 

1/J . ' 1/J. ' 
( __ l. ) ,_(~ )2 vanish, but now we let 

1/J . 1/J . 
1. 1. 

and 

1/J. ' 
<p." - 2~ <p. 

1. 'I' • l. 
1. 

'2 
= k.<p. 

l. 1. 

1/J.', 1/J.' 2 '2 
( ~ ) - ( ,It 1.) = R.. <p • . , 

'I' • 'I' . 1. 1. 
l. l. 

l. 

(3.3) 

(3.4) 

where k. and R.. are constants. By solving (3.3) and (3.4), 
1. 1. 

we have 

(3.5) 

and 

(3.6) 

As is easily seen from Appendix, the freedom of k. does not 
1. , 

contribute to increasing free parameters in 4>i (x). Hence 
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we let k i = 0 for brevity. Then, by solving (3.6), we obtain 

change (3.2) into 

2 

" d vi _ (0 1 + co n ) V B (x ,,) - 3/4 F ( C ) e. 2 e.N. • = ,e. X,e. , 
dz 1 1 

(3.7) 

where 2 
.fl..= S. /4 - a.y .• 

1 1 1 1 
Notice here that ~(x) in (2.2) is 

just obtained by integrating (3.5) from x i + l / 2 to x and by 

connecting them each other. Since z=~(x) has an inverse 

x=~-l(z), the right hand side of (3.7) may be written as 

B(~~l(z) ,E)-3/4F(~-1(z) ,E). Thus the equation (3.7) is solvable 

analytically on[~(xi) ,~(xi+l)] and its solution takes the 

form 

+ w. (z), 
1 

!?-+££. 
where S.= 1 , and w. (z) denotes a particular solution of 

1 E 1 

(3;7)~ According to (3.1), we further have, for xi;x~xi+l' 

+ K2exp (-si (~(x) -~ (x i +l / 2 ») + wi (~(x» }. 

(3.8) 
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The discussion below is exactly the same as in [2]. We repre-

obtain 

and 

b. 1/ 4 b 1/4 
1 Y. _ i+1 Y. 1 -
L. 2 1 L. 1 1+ 1, 1, 

w .. 
.2:.t2:. 

"C. 2 1, 

w. '+1 + 1,1 
L. 1 1, 

:_( 1 i ,2 _ "C i ,l 
"C. 1 L. 2 1, 1, 

L' 2 "C. 1 
+( ~ - ~ ), 

L. 1 L. 2 1, 1, 

_ (i) 
where "C • • - exp(s.k. ) for j=1,2, and w .. = w. (</l(x.» for 

1,) 1 J 1,) 1 ) 

j=i,i+l. We repeat the same procedure as above in (i-1)th 

interval [x. l'x.]. And we connect the first derivative of 
1- 1 

Y(x) in i.th interval with that of Y(x) in (i-l)th interval 

at the node xi. By doing so, we obtain the difference scheme 

G. = 
1 

= G. , 
1 

- 19 -
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Finally, we calculate G.. Since we have, from (2.1), 1. 

-1 -3/4 -1 2 
B(<j> (z),e:) F(<j> (z),e:)= Pi(Z-<j>(Xi + l / 2 » +Qi(z-<j>(xi + l / 2 » 

+ r., 
1. 

the particular solution w. (z) may be written as 
1. 

Therefore, 

-3/4 
b1.·_l f1.·-l coth(a1.·_l) coth(o.) 3/4 + ( + ___ '=1._ ) b -:- f . 

Gi = - s. l£sinh(a. 1) s. 1£ s.£ 1. 1. 1.- 1.- 1.- 1. 

-3/4 
b i +l f i +l 2Pi-l 
s.£sinh(a.) + 3 

1. 1. S. 1£ 1.-

(coth(a. 1)- 1 ) 
1.- sinh (0. 1) 1.-

(i) 2 
+ (2p.k l +q.)/s. £ • 1. 1. 1. 

Concerning the difference scheme (3.9), we have the 

-following theorem. 
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Theorem. At all points .of the mesh, the solution of 

the scheme (3.9) subject to YO=aO and YN=a1 converges to that 

of (1.1) uniformly in E with order h 3 . 

Proof. The proof follows directly from Lemma. 

4. Numerical experiments 

We first rewrite ~he difference scheme (3.9) in the 

following form; 

= 
2v i _ l -3/4 

2 b. 1 f. 1 l.- . l.-
S. IE l.-

2 l+v. 1 
+ ( l.-

2 
S. IE l.-

2 
l+v. 3/4 

+ 2l. )b~ f.-
l. l. 

S.E).. 
l. l. 

(i) 
2p. 2 2p.k1 +q. 

4l. (I-Vi) +{ l. 2 l. 
s. EA. s. £ 

l. l. l. 

2 
I-v. 1 1-

s. 1 l.-

2v i -3/4 
2 b i +1 f i +1 s.£A. l. 1 

(i-I) 
2p. lk2 +q. 1 

1- l.- } 
2 

S. 1£ l.-

(4.1) 

2 2 
where V.= exp(-cr.), A.= s. l(l-v.)/s. (I-v. 1) and 

l. 1 l. 1- 1 l. 1-

= 2 n· 1 + V. 1 + 1 1-

1-V. 21 2 s. 
____ 1~-_(1+v. ) __ -=1_ 

1 2 1 S. 1 -v. 1-
1 

This is because we want to prevent numerical overflows due to 

exponential growth. In each table below, we give some results 
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for the scheme (4.1), and the schemes of Miller [1] and of 

Niijima [2]. For simplicity, only the maximum error at the 

nodes is listed in each table. The experiments were carried 

out for N=S, 16 and 32. 

The first problem is 

EY" - (x+l)y = 40(x(x2-1)-2E), 

yeo) = y(l) = 0 

with the exact solution y(x)=40x(1-x). 

N=S 

Scheme (4.1 ) Miller [1] Niijima [2] 

E = 10-2 0.20 (-4 ) 0.93 (-1) 0.10 ( 0) 
10- 3 0.24 (-4 ) 0.51 (-1) O.Sl (-1 ) 
10-4 0.20 (-4) 0.71 (-2 ) 0.40 (-1 ) 
10-5 0.21 (-4) 0.71 (-3) 0.14 (-1 ) 

10-6 0.19 (-4) 0.69 (-4) 0.46 (-2 ) 

10-7 0.19 (-4) 0.57 (-5 ) 0.15 (-2) 

10-S 0.67 (-5 ) 0.0 0.47 (- 3) 

N=16 

Scheme (4.1) Miller. [1] Niijirna [2] 

E = 10-2 0.65 (-4 ) 0.25 (-1) 0.26 (-1 ) 

10- 3 0.36 (-4) 0.21 (-1) 0.24 (-1 ) 

10-4 0.33 (-4 ) 0.70 (-2) 0.17 (-1) 
10-5 0.26 (-4 ) 0.75 (-3 ) 0.69 (-2 ) 

10-6 0.20 (-4 ) 0.74 (-4 ) 0.23 (-2) 

10-7 0.20 (-4) 0.67 (-5 ) 0.76 (-3 ) 

10-S 0.11 (-4 ) 0.0 0.24 (-3) 
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N=32 

Scheme (4.1) Hiller [1] Niijima [2] 

E = 10-2 0.59 (-4 ) 0.64 (-2 ) 0.65 (-2 ) 
10- 3 0.21 (-4) 0.61 (-2 ) 0.64 (-2 ) 
10-4 0.35 (-4 ) 0.41 (-2 ) 0.56 (-2) 
10-5 0.39 (-4) 0.77 (-3) 0.31 (-2) 
10-6 0.21 (-4 ) 0.76 (-4) 0.12 (-2) 
10-7 0.21 (-4 ) 0.67 (-5) 0.38 (-3 ) 
10-8 0.14 (-4) 0.0 0.13 (-3) 

The next problem is 

e:y"- _4_-:-4 (1+I£(x+1» y = _4_-:-4 { «1+IE(x+1» +47f 2 c);cos (27ft) 
(x+1) (x+l) 

-27fc(x+1)sin(27ft)+ 3(1+/E(x+l»s(1)} 
. 1-~(1) I 

yeo) = 2, y(l) = -1 

with the exact solution y(x)= -cos(27ft)+ 3(~(t)-s(1», where 
1-~(1) 

~(t)= exp(-t/I£) and t=2x/(x+1). 

N=8 

Scheme (4.1) Miller [1] Niijima [2] 

s = 10-2 0.21 (-2 ) 0.91 (-1) 0.64 (-1) 
10-3 0.24 (-2 ) 0.30 (-1) 0.50 (-1 ) 
10-4 0.17 (-2 ) 0.39 (-2 ) 0.22 (-1 ) 
10-5 0.67 (-3 ) 0.41 (-3 ) 0.78 (-2 ) 
10-6 0.48 (-3) 0.40 (-4 ) 0.26 (-2) 
10-7 0.73 (-4) 0.39 (-5 ) 0.82 (-3 ) 
10-8 0.24 (-4) 0.36 (-6 ) 0.26 (-3) 
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N=16 

Scheme (4.1) Miller [1] Niijima [2] 

e: = 10- 2 0.11 (-3 ) 0.25 (-1) 0.18 (-1 ) 

10-3 0.17 (-3) 0.15 (-1) 0.21 ( -1) 

10-4 0.20 (-3 ) 0.38 (-2) 0.11 (-1 ) 

10-5 0.98 (-4) , 0.41 (-3 ) 0.42 (-2 ) 
10-6 0.32 (-4 ) 0.40 (-4) 0.14 (-2 ) 
10-7 0.11 (-4 ) 0.39 (-5 ) 0.45 (-3 ) 
10-8 0.40 (-5 ) 0.36 (-6 ) 0.14 (-3 ) 

N=32 

Scheme (4.1 ) Miller [1] Niijima [2] 

e: = 10-2 0.62 (-4) 0.65 (-2 ) 0.48 (-2 ) 
10-3 0.26 (-4) 0.71 (-2) 0.77 (-2 ) 
10-4 0.28 (-4) 0.26 (-2 ) 0.66 (-2 ) 
10-5 0.27 (-4) 0.40 (-3 ) 0.28 (-2 ) 
10-6 0.86 (-5) 0.41 (-4) 0.97 (-3 ) 

10-7 0.32 (-5) 0.39 (-5 ) 0.31 (-3) 

10-8 0.30 (-5 ) 0.66 (-6 ) 0.10 (-3 ) 

When e: is small enough, the scheme of Miller [1] is 

superior to the others. But the new scheme (4.1) gives good 

results in the case when e: is not so small. 
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Appendix 

We shall solve (3.3) . and (3.4). For brevity, we omit 

the index i. Substituting ~'/~=(~"-k~,2)/2~' which follows 

from (3.3) into (3.4) yields 

2 where m=4~+k. We set ~=¢I, and further 

Then (A.l) changes into 

2w' 
2 m-w 

= 11. 

(A.l) 

(A.2) 

(A.3) 

S . ,dw, 
l.nce w = dll ~ 

dw 2 
= d~ ~ w from (A.2), the equation (A.3) may 

be written as 

By integrating the both sides, we obtain 

2 w = m - -~ , (A. 4) 

where c 4 is non-zero. Combining (A.4) with (A.2), we have 

Since 

2Im~- c 4 

1/2 
c4~ 



it follows that for a constant c s ' 

Solving this equation, we get 

~ (x) 
c 4 2 m 

= 1/(- ~(x+cS) + --). c 4 
(A. S) 

c 4 is non-zero, we can express c 4 ' Cs and m by c l ' c 2 and c 3 . 

That is, ~(x) in (A.5) may be written as 

tj; I (x) 

with free parameters c l ' c 2 and c 3 . 
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On Von Foerster Equation in Biomathematics 

Akio YAMADA* and Hiroumi FUNAKOSHI** 

Chapter 1. Introduction 

It is well known that the aspect of growth of microorganisms in a finite 

amount of liquid medium (batch culture) changes from "logarithmic phase" 

(period of exponential growth) to "stationary phase" (period of no growth) by 

action of many limiting factors such as deficiency of nutrients, accumulation 

of harmful metaholites, shift of pH and so on. According to the experiment by 

Maruyama et al. [1] on Bacillus subtilis with glucose deficiency as the only 

limiting factor, the total mass of the cells increases exponentially till 

the starvation point ( ts ) at which glucose is almost exhausted, and the 

increase abruptly stops at ts • On the other hand, the growth of the total 

number of the cells begins to slow down about 1.5 generation time before ts 

(Generation time is the time length between two divisions of a cell occurring 

in succession.), showing that the culture has entered into transition period 

from logarithmic period. Nishi et al. [2] suggested that synchronization of 

cell cycle occurs during this period. 

Starting from a few sicple assumptions, we shall mathematically show 

that these phenomena in the transition phase can be explained by the model in 

which generation time of_the cells gets longer when concentration of a 

limiting nutrient becomes lower than a certain critical value. 

* Department of Mathematics, College of General Education, 

University of Tokyo, Tokyo, 153, Japan. 

** Department of Chemistry, College of General Education, 

University of Tokyo, Tokyo, 153, Japan. 
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Chapter 2. Theory 

§ 1. Preliminaries 

Letting a be cell age of a cell (time having elapsed since the last 

division of that cell) and u(a, t) be the density function of cell number with 

respect to a at time t, we have 

(2.1) au au 
C3a + at = - AU (Von Foerster Equation [3]), 

where A is called loss function and generally depends on a, t and u. In 

our case, A represents death rate of the cells since in batch culture there 

is no cell to be lost by emigration. In application there is a case in 

which u(a, t) is not necessarily of class Cl . In such a case we may 

consider from the biological point of view that u(a, t) is differentiable 

at least in the direction of characteristic line of Von Foerster equation 

(2.1). We consider, therefore, the derivative in the direction of 

characteristic line of (2.1): 

Dcu(a, t) = lim u(a + h, t + h) - u(a, t) 
11-10 h 

which naturally coincides with (a/C3a + C3/C3t)u(a, t) when u is of class Cl . 

Hence we treat Von Foerster equation in the form: 

(F) Dcu(a, t) = - Au(a, t) • 

Assumptions: 

(1) Generation time ag is a function of the concentration C of the 

limiting nutrient (glucose). (As C is a function of t, we consider ag 

a function of t in the following treatment.) 

(2) All the cells have the same generation time. 

(3) A cell whose cell age has reached generation time (i.e. a = ag(t) ) 
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divides into two equal sister cells. 

We suppose that ag(t) is a positive, continuous and right differenti­

able function on [to, (0) and satisfies 

(2.2) 

If ag (t') - ag (t) ~ t' - t for some t < t' , there exists a subinterval 

[T, T'] of [t, t'] such that ag(T') - ag(T) ~ T' - T > 0 and that T' - T 

is sufficiently small. Since there is no cell division during the time 

interval [T, T' ], it belongs to a period of no growth which we do not treat 

in the present note. The domain of definition of u is 

D = {(a, t) It ~ to , 0 , a , ag(t)} , 

where to is the initial time. By assumption (2.2), D satisfies the 

characteristic line condition [4]: 

If (a, t) ED and (a + h, t + h) E: D, then .(a + 8h, t + 8h) (i: D 

for a11 86[0,1] . 

This condition is natural from the biological point of view, because 

(a + 8h, t + 8h) lies on the growth trajectory in the (a, t)-plane.of a cell 

of age a at time t. From assumption (3), 

(2.3) ) h Jag(t) 
Ou(a, t + h)da = 2 u(a, t)da 

ag(t + h) - h 
(0 < h < ag(t + h) ) , 

because both sides of this equation represent the number of the cells born 

during the time interval [t, t + h]. When u(a, t) is left continuous with 

respect to a at (ag(t), t) and u(a,t) restricted on domain 

{Ca, T) 6 D I 0 ~ a ~ T - t, t ~ T < t + d for some e: > 0 is continuous at 

(0, t), dividing both sides of (2.3) by h and letting h ~O, we obtain a 

boundary condition : 

(Bj u(O, t) = .2(1 - D+ag(t))u(ag(t), t) . 
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When we put bet) = t - ag(t), b is a continuous and right differentiable 

fUnction on [to, 00). bet) represents the birth time of a cell dividing at 

time t. Since b is strictly increasing from assumption (2.2), we can 

inductively define a sequence to <tl < t2 < --- by recurrence formula : 

-1 
tn = b (tn_I) (n ~ 1) , 

When t 1 ~ lim bet) for somen, we define tn = 00 and the sequence 
n- t~oo 

terminates at n. Otherwise {tn} is an infinite sequence. For convenience 

sake we set t_l ::I b (to) . When we define 

fO = 
{(a, t) It ~ to, t - a < to' 0 ~ 

On = {(a, t) Itn_I ~ t - a < tn, 0 , 

domain ° can be expressed as the disjoint 

union of subdomain On's (Figure 1) 

(2.4) ° = U On . 
n~O 

Define a sequence of functions bn 

on [tn_I' 00) by recurrence formula 

1 bO (t) = t 

lbn(t) = bn_I(b(t)) (n ~ 1) 

By this definition it is clear that 

b 1 (t) = bet) 

(2.5) b (t ) = b (t ) = ---n n-l n-l n-2 

--- = bl(to) = bo(t_ l ) = t_l 

(2.6) bn(tn) = bn_1(tn_l ) = 

--- = bl(t l ) = bO(tO) = to . 

a ~ ag(t)} 

a , ag(t)} (n ~ 1) • 

Figure 1. 

Division of domain D into subdomain 0n ls . 
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§ 2. Density Function of Cell Number 

Under the notation and assumptions in § 1, the following theorem holds 

concerning density function u(a, t) of cell number. 

Theorem 1. 

Let A be a constant and 'f a real-valued function defined on (0, ag (to)] . 

Then. there exists a unique solution u(a, t) on D of the equation 

(2. 7) {::: 

(8) 

Dcu(a, t) = - Au(a, t) 

The solution u(a, t) is given by the following formula : 

(2.8) u(a, t) = 2nD+bn (t - a) $OCto - bn(t - a))e-A(t-to) for (a, t) E.Dn . 

Proof 

(Existence) We shall show that u(a, t) given by formula (2.8) is a 

solution of equation (2.7). When (a, t) f: Dn , we have t 1 ~ t - a < tn , n-

therefore bn(t - a) makes sense. The relation 

implies 

o < to - bn(t - a) ~ to - t_l = ag(tO) , 

which shows that to - bn(t - a) belongs to the domain of definition of f. 
Since D is the disjoint union of Dn's (n ~ 0) by (2.4), u(a, t) is a well-

defined function on D. If (a, t) e Dn and (a + h, t + h) eD, then we have 

(a + h, t + h) e Dn and from (2.8). 

u(a + h, t + h) - u(a, t) 

Hence, u(a. t) satisfies Von Foerster equation (F). For 0 < a ~ ag(tO), we 

have (a, to) 6 DO. ' and so 
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which is no other than initial condition (I). For t ~ to ' there exists a 

unique integer n ~ 1 such that t n_l ~ t < tn • Since (0, t) G On ' we have, 

on the one hand, 

u(O, t) = 2nO+bn (t) 1(to - bn(t))e-A(t-to). 

On the other hand, from the relation 

t 2 = bet 1) ~ bet) < b(tn) = t l' n- n- n-

we have (ag(t), t) e 0n_l ' and so 

u(ag(t), t) = 2n- 10+bn_l (t - ag(t)) r(to - bn_l(t - ag(t)))e-A(t-to) 

= 2n- 1D+bn_1 (b(t)) f(to - bn_l(b(t)))e-A(t-to) 

Hence, we obtain 

2(1 - D+ag(t))u(ag(t), t) 

= 20+b(t)X2n-lo+bn_l(b(t)) ~(to - bn_l(b(t)))e-A(t-to) 

= 2nD+bn (t) ~(to - bn(t))e-A(t-to). 

Boundary condition (B) is therefore verified. 

(Uniqueness) We shall show by mathematical induction on n that any 

solution u(a, t) on ° of equation (2.7) coincides on subdomain Dn of D with 

the solution given by formula (2.8). 

1- For n = 0, we have 

to) e -A (t-tO) u(a, t) = u(a - t + to, (a, t) e DO ' 

since u(a, t) satisfies Von Foerster equation (F). Initial condition (I) 

for u implies 

u(a - t + to, to) = rea - t + to) 

= Y'(to - boCt - a)) . 

Hence, we obtain 

( ) CJ)( b (t )) -A(t-tO) u a, t = 7 to - 0 - a e • 

2- Suppose that for Ca, t) Ii: 0n_l 
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(2.9) u(a, t) = 2n- l D+bn_l (t - a)y(to - bn_l (t _ a))e-A(t-to) . 

For t n_l ~ t < tn ' we have (ag(t), t)EDn_1 . Then, by induction hypo­

thesis (2.9). 

u(ag(t), t) = 2n- 1D+bn _l (t - ag(t)) 1(to - bn_1(t _ ag(t)))e-A(t-to) 

= 2n- 1D+bn_l (b(t)) 'f (to - bn_l (b(t)))e-A(t-tO) 

On the other hand, using boundary condition (8) 

u(O, t) = 2(1 - D+ag(t))u(ag(t), t) 

• 2D+b(t) 2n- l D+bn_1 (b(t)) 'f (to - bn_l (b(t)))e-A(t-tO) 

= 2nD+bn (t) Cf (to - bn (t)) e -A (t-tO) • 

Therefore, for (a, t) E- Dn ' 

) ) -Aa u(a, t = u(O, t - a e 

= 2nD+bn (t - a) 'f(to - bnCt _ a))e-A(t-a-tO)e-Aa 

= 2nD+bn Ct - a) 1(to - bnCt - a))e-A(t-to) 

Q. E. D. 

§ 3. Total Number of the Cells 

It is very difficult, at the present level of experimental technique, 

to measure generation time ag(t) as a function of t. When one analyzes 

experimental data, it is, therfore, necessary to find agCt) from another 

relation : 

C2.l0) 
rag (t) 

Nv(t) = Jo u(a, t)da 

where Nv(t) represents the total number of the viable cells at time t, 

a quantity measurable by experiments. The following theorem gives a relation 

between Nv(t) and ag(t) through the intermediary of bnCt). 
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Theorem 2. 

In addition to the assumptions in Theorem 1 J suppose that D+ag is right 

continuous and that ~ is a non-negative, left continuous and integrable 

function on CO, agCtO)] . Then, for any t ~ to ' u(a, t) given by formula 

C2.8) is an integrable function of a on [0, agCt)] and its integral NvCt) 

defined by C2.l0) satisfies the following formula : 

(2.11) NvCt) = {2nN.,(tO) - 2n- 1cp(to - bn(t))}e-A(t-to) 

where 

In order to prove Theorem 2, we prepare 

Lemma . 

for t 1 ~ t < tn' n-

Let F be a real-valued monotone increasing continuous function on 

[ao' al ]. Moreover, suppose that F is left differentiable on (aO' al] and 

that its left derivative D_F is left continuous. Then, 

Proof of Lemma 

Since F is a monotone increasing function, it is differentiable almost 

everywhere and satisries 

ra1DF(a)da~ F(al) - F(aO) 
J aO 

where DF(a) denotes the derivative of F for almost all a 6[aO' al ] • 

( See e.g. [5].) Since we have 

o ~ Cal D_F(a)da = ~al DF(a)da ~ F(al) _ F(aO) < 00 , 

~ao aO 

f(a) = D_F(a) is integrable on (aO, a1] . 
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G (x) = \ x f(a)da 
) a O 

is, therefore, a continuous function of x ~[aO' all. Since f iS'left 

continuous by assumption, G is left differentiable and its left derivative 

D_G is equal to f. Hence, 

F - G is, therefore, a constant on [aO' all, because F - G is continuous OL 

[aO' all. Since G(aO) = 0, this constant must be F(aO)' So, we obtain 

Q. E. D. 

Proof of Theorem 2 

For t n_l ~ t < tn' we have 

o ~ t - t n_l < ag(t) • 

Let us fix t for the moment and let F(a) denote ~(to - bn(t - a)) for 

o ~ a ~ t - tn_I' Since ~ and bn are both continuous, F is also continuous. 

F is monotone increasing because ~~ 0 and bn is monotone increasing. As ~ 

is left continuous, ~ is left differentiable and D_~ = f . Since bn is 

strictly increasing and right differentiable, F is left differentiable and 

D_F(a) = T(to - bn(t - a))D+bn(t - a) 

which is left continuous, because of the left continuity of 1 and the right 

continuity of D+bn . By Lemma, therefore, 

that is to say 

~ :-tn _1 r (to - bn (t - a))D+bn (t - a)do 

- ~(to ~ bn(tn_l )) - ~(to - bn(t)) 
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Hence, we obtain 

where we used relation (2.5). Similarly, we obtain 

~ ag(t) n I _ b (t ))}e-A(t-to) u(a, t)da = 2 - {~(to - bn(t)) - ~(to n-l n-l 
t-t I n-

(by (2.6)). 

We have, therefore, 

f t-t f "gCt) 
Nv(t) n-l u(a, = t)da + u(a, t)da 

0 t-t n-l 

{2n~(ag(to)) n-l bn(t))}e-A(t-to) = - 2n~(to - bn(t)) + 2 ~(to 

= {2n~(agCtO)) _ 2n-l~(to _ bnCt))}e-A(t-tO) 

When t = to' n is equal to 1 and we have 

Hence, 

Q. E. D. 

In the culture,dead cells accumulate gradually. Let NdCt) be the number 

of the dead cells at time t. In practice, counting the total number of the 

viable and dead cells i.e. 

is much easier than counting Nv(t). It is clear that Nd(t) is given by 

Hence, we have for t I ~ t < tn , n-
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+ ~: {2'1lv (to) - 2n-l~(to - bn (T)))e -A (T-tO) dT ] 

n-l 

by (2.11). We obtain finally 

n-l 
+ ~. 2ke-A(tk-tO)} (2.13) N(t) 

k=l 

_ bn(t))e-A(t-to) 

+ 2n-l~: ~(to _ bn(T))e-A(T-tO)dT} 

n-l 

§ 4. Biomass of the cells 

Suppose that all the cells of age a have the same biomass mea, t) at 

time t,. From the biological point of view as in § 1, mCa, t) is considered 

a positive function on D which is differentiable in the direction of charac-

teristic line of Von Foerster eQuation~ Moreover, we suppose that all 

the cells increase their mass at a constant rate ~ : 

(2.14) Dcm(a, t) = ~m(a, t) . 

Let ~(a) be the biomass of a cell of age a at the initial time to 

(2.15) mea, to) = ~Ca) 

From assumption (3) in § 1, a cell having reached its generation time agCt) 

at time t divides into two sister cells of equal biomass. Hence, we have a 

boundary condition for mea, t) : 

(2.16) 
1 

m(O, t) = 2 m(ag(t). t) (t ~ to ) • 
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Theorem 3 

Let 1JJ be a real-valued function on (0, ag(tO)]' Then, there exists a 

unique solution mea, t) on D of the equation 

(2.17) 

(2.14) 

(2.15) 

(2.16) 

Dem(a, t) = )Jm(a,· t) 

mea, to) = lJJ(a) 

1 m(O, t) = 2m(ag(t), t) 

(0 < a ~ ag(tO) ) 

(t ~ to ) . 

The solution mea, t) is given by the following formula : 

(2.18) (a, t) E Dn . 

Proof 

(Existence) It is shown similarly as in Theorem 1 that mea, t) given by 

formula (2.18) is a well-defined function on D and satisfies (2.14) and 

(2.15). As for boundary condition (2.16), we take a unique integer n ~ I 

such that t n_l ~ t < tn' From the relation (0, t)~Dn , we have 

m(O, t) = In lJJ(to - bn(t))e)J(t-tO) 
2 

From the relation (ag (t), t) E Dn _1 , we have 

m(ag(t), t) = --1.:.-1 ¢(to - b l(b(t)))e)J(t-tO). 
2n- n-

Hence, boundary condition (2.16) holds. 

(Uniqueness) We shall show by mathematical induction on n that any 

solution mea, t) on D of equation (2.17) coincides on Dn with the solution 

given by (2.18). 

1- For n = 0 , we have, by (2.14), 

mea, t) = mea - t + to' to)e)J(t-tO) (a, t) E DO • 

By initial condition (2.15), we have 

mea - t + to' to) = w(a - t + to) • 

Hence, we obtain 

mCa, t) = lJJ(to - bO(t - a))e)J(t-tO) for (a, t) E': DO • 

2- Suppose that mea, t) is given on Dn_l by (2.18). Using (2.16) and 
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induction hypothesis, we have, for t 1 ~ t < tn , n-

m (0, t) 
1 

= '2 m(ag(t), t) 

= l-L 1jJ(t - b. (t - a (t)))elJ(t-tO) 
2 2n-l 0 n-l g 

= -l1jJ(t _ b (t))elJ(t-tO) 
2n 0 n ' 

since (ag(t), t) ~ Dn_l • For any (a, t)" Dn , the relation t n_l ~ t - a < tn 

implies 

mea, t) = m(O, t _ a)elJa 

= ~n 1jJ(to - bn(t _ a))elJ(t - a - to)elJa 

= ~n 1jJ(to - bn(t - a))elJ(t-to). 

Q. E. D. 

If D+ag is right continuous and 1jJ(a) 1(a) is a non-negative, left conti­

nuous and integrable function on (0, ag(tO)]' then, for t ~ to ' 

mea, t)u(a, t) is an integrable function of a on [0, ag(t)] and its integral 

( ag (t) 
My(t) =) 0 mea, t)u(a, t)da 

represents the total biomass of the viable cells at time t. We shall calcu-

late Mv(t) , using the results (2.8) in Theorem land (2.18) in Theorem 3. 

For t n _1 ~ t < tn ' we have 

~ :-tn-lm(a, t)u(a, t)da 

r J a=t-t 1 
= ~(to - bn(t - a)) n-

a=O 

(lJ-A) (t-to) e , 

where 'I' (a) = ~ : 1jJ (eL) J' (eL) deL. Similarly we have 
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) 
ag(t) 

mea, t)u(a, t)da 
t-t n-1 

= [Il'(to ~ a",ag(t) (ll-A) (t-to) - bn _1(t - a)) . e· . 
a=t-t 1 n-

Hence, we obtain 

(2.19) Mv(t) = Il'(ag(to))e(ll-A) (t-to) = MV(to)e(ll-A) (t-to) , 

which is the formula to be expected natura11y. (2.19) is consistent with 

experimental data, which justifies the whole framework of our theory. 

Let Md(t) be the total biomass of the dead ce11s at time t. Then we 

have 

(2.20) 

Hence, the total biomass M(t) of the viable and dead cells at time t is 

given by 

(2.21) M(t) = My(t) + Mci(t) 

= II M (t ) (ll-A)(t-tO) M (t ) A M(t) II - A v 0 e . + d 0 - II _ X'"'I 0 . 

Chapter 3. Some Special Cases and Applications 

§ 1. The Case in Which ag(t) Is Constant 

In this section we suppose that generation time ag(t) is independent of 

time t and we denote its constant value by age It is evident that 

ag(t) - ag satisfies a11 the assumptions on ag(t) in Theorems 1 and 2. By 

definition of bet), we have 

bet) = t - ag . 

Hence, we obtain 
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Boundary condition (B) reads, in this case, as follows 

u(O, t) = 2u(ag, t) 

(see Scherbaum and Rasch[6]). Thus the solution u(a, t) of (2.7) is written as 

(3.1) u(a, t) = 2n 1 (a - t + tn)e -A(t-tO) for (a, t) ~ On . 

The total number Nv(t) of the viable cells at time t is given by 

(3.2) 

where ~(a) is the integral of 10n (0, a], 1 being any non-negative 

left continuous integrable function defined on (0, ag]. Even if ~ is conti­

nuous on the whole interval (0, ag], the solution u(a, t) is not necessarily 

continuous on characteristic lines t - a = t n-1 

tion we have the following proposition. 

Propositio!l 1 

.(n ~ 1) • In this connec-

The following conditions (i) and (ii) are equivalent. 

(i) u(a, t) given by (3.1) is right continuous with respect to a at 

(a, t) such that t - a = t l' n-

(ii) lim 'f (h) = 2 fj' (ag) • 
h~O 

Proof 

When t - a = t n_1 ' (a + h, t) belongs to 0n_1 for 0 < h ~ ag - a . 

We have, therefore, 

u(a + h, t) n-1 (IJ = 2 T (a + h - t + 

= 2n- 1 Y'(h)e-A(t-to) 

Hence, we have 

which leads to the desired equivalence. 

Q. E. 0. 

From Proposition 1 and the continuity of u in the direction of characteris-

tic line, we have the following proposition. 
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Proposition 2 

The following conditions (i) and (ii) are equivalent. 

(i) u given by (3.1) is continuous on D. 

(U) ~ is continuous on (0, agl and 

§ 2. Logarithmic Phase (Period of Steady Growth) 

When there is no limiting factor in batch culture, the cells enter 

sooner or later into a period in which they grow steadily at their own maxi-

mum growth rate. The period with this aspect of growth is called conven-

tionally "logarithmic phase" by microbiologists. 

In logarithmic phase the age distribution is considered to be stable in 

shape, which means 

(i) ag(t) is constant (= ag ), 

and 

(ii) u(a, t) can be written as 

u(a, t) = A(a)T(t) , 

where A is a non-negative function defined on [0, agl and T is a 

positive one on [to, 00) • 

Since u(a, t) is the density function of cell number with respect to a, 

A(a) must be integrable on [0, ag], and the total number Nv(t) of the viable 

cells is given by 

rag 
Nv(t) = T(t) 0 A(a)da 

T(t) is, therefore, considered to be no less differentiable than Nv(t). 

From the relation 

{u(a + h, t + h) - u(a, t)}/h 

= T(t + h){A(a + h) - A(a)}/h + A(a){T(t + h) - T(t)}/h , 
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A(a) is differentiable if u(a, t) is differentiable in the direction of 

characteristic line. Hence, when u satisfies Von Foerster equation (F), ~e 

have 

d~ A(a) T(t) + A(a) d~ T(t) = -AA(a)T(t) 

Thus we find 

1 d 1 d 
- A(a) da A(a) = T(t) dt T(t) + A 

Both sides of this equation must equal a positive constant ~I, and so 

(3.3) ura, t) = uoe~l(t-a)-A(t-to) , 

where Uo is a positive constant. This is a solution of Von Foerster 

equation without initial condition or boundary condition, If we take t = to. 

(3.4) u(a, to) = uoe~1 (to-a) 

Conversely, sup-pose that u(a, t) is a solution of Von Foerster equation (F) 

with initial condition (3.4) and boundary condition (B) with constant ago 

~ I (to .. a) Then we can apply Theorems 1 and 2 to this case taking~(a) = uOe 

(0 < a ~ ag) and obtain from (3.1) and (3.2) in §1 

(3.5) for (a, t)&Dn 

(3.6) Nv(t) = uO~~.-.l. {(e-~Iag )ne]Jlt + (1 _ 2e-~'ag )e~ltO}e-A(t-to) 

for t n_1 ~ t < tn 

The necessary and sufficient condition for continuity of u given by (3.5) 

is by Proposition 2 

lim ~(h) = 2 1(ag ) 
h."O 

This condition is equivalent to 

(3.7) ~'= log 2 
ag 

Substituting (3.7) into (3.5) and (3.6). we obtain 

(3.8) u(a, t) = uoe~l(t-a)-A(t-to) 

(3.9) 
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So we have by (2.12) 

Hence 

(:L 10) N(t) = NvCt) + Nd(t) 
Uo 'J.llt-A(t-tO) AUO 'J.lltO 

= 2 Cl1 I -X) e + Nd (to) - 2'J.l I ('J.l I -X) e 

= ').l~~A NV(to)e(').l'-A) (t-tO) + Nd(tO) - ~~ Nv(tO) 

As for the biomass in logarithmic phase, mea, t) is considered independent 

of t. Partial differential equation (2.14) reduces, then, to ordinary 

differential equation 

dm 
da = ').lm 

and we obtain 

(3.11) mCa, t) ; mea) = moe'J.la 

with a positive constant mo' Boundary condition (2.16) for mCa, t) implies 

(3.12) u.,. 10£.2 
ag 

Ivhich means 

').l = U I • 

§ 3. Transition Phase 

We take the end pOint of logarithmic phase for the initial time to and 

suppose that ag(t) depends on t. In other words we consider equation (2.7) 

with 1(a) = uoe'J.l(to-a) . Then we have by Theorems 1 and 2 

(3.13) uta, t) = 2n uOO+bn(t - a)e').lbnCt-a)-A(t-to) for (a, t) ~ On , 

(3.14) 

As for mCa, t), taking I/J(a) = moef.lq. , we have by Theorem 3 
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(3.15) ( t) = ~ e~{t-bn(t-a)} m a, 
2n 

for (a, t) Eo Dn 

Especially for to ~ t < tl we have 

(3.16) 

(3.17) 

§ 4. Application to Experimental Data 

The graphs of log M(t) and log N(t) against t in logarithmic phase 

are linear within the range of experimental errors, which is the origin of 

the name "logarithmic phase". This fact means that the constant terms of 

equations (2.2l)and (3.10) are negligible compared to the time dependent 

exponential terms . According to (2.21) and (3.10), one can determine ~ - A as 

the common gradient of the graphs of log M(t) and log N(t), obtained 

through experiments. Observation of biomass mea) of individual cell as a 

function of cell age a may be possible in principle, which gives the value 

of ~ by (3.11). Hence A also can be determined. 

In the transition phase, one can calculate ag(t) by (3.17) because 

Nv(t) can be obtained through the experiment called "viable count". Thus 

u(a, t) is calculable by (3.16). 

We now apply the above theory to the experimental data obtained by 

Maruyamaet al. [1]. Since the data concerning mea) is not available, we are 

obliged to guess the value of the death rate A , which is considered to be 

not so significant in logarithmic phase, the period in which the cells grow 

in their best condition. In the transition phase which follows logarithmic 

phase, A is still considered to remain small as the transition phase we treat 
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is rather short i.e. less than about 1.5ag (tO) . Hence we step forward, 

putting A = O. 

Generation time ag(t) calculated by (3.17) from the data of Maruyama et 

al. shows that the culture reaches the starvation point ts before the 

curve a = ag(t) crosses the characteristic line t - a = to (3.16) and 

(3.17) are sufficient for the analysis of the transition phase in this case. 

Figure 2 shows the regression line for ag(t) thus obtained which is almost 

linear. Since the growth rate of cell number is given by 

1 
NvCt) D.Nv(t) = ~(l - D+ag(t)) , 

D+ag(t) > 0 implies that the growth rate in the transition phase is less than 

~, that in logarithmic phase. 

Since concentration C of the limiting nutrient (glucose) is given in the 

data of Maruyama et al. as a function of t, we can transform ag(t) into 

agCe) (see Assumption (1)). The result shows that the critical concentration 

below which generation time depends on C is about 28 times as high as the 

value reported by Monod[7] with respect to Esoheriohia ooZi, which means that 

the cells in the case of Maruyama et al. are more susceptible to deficiency 

of nutrient than the cells in Monod's case. When C lowers below the critical 

concentration, l/ag decreases linearly against C. 

Substituting the values of ag(t) in Figure 2 into equation (3.16), we 

can calculate u(a, t) in the transition phase. The numerical calculation 

shows that a peak is formed in u(a, t) with respect to a and the peak mOVE;S 

rightward (Figure 3). When the peak reaches ag(t), relatively large number 

of the cells divide simultaneously, i.e. the cell cycle of the cells are 

partially synchronized. In the case of Maruyama et al., as seen in Figure 3, 

the culture enters into stationary phase (which we do not treat in this note) 

before the peak reaches ag(t). Accordingly the synchronous division does not 
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Figure 2. Variation of as(t), as well as ag(t), with time. 

The right end of each horiz~ntal line and the triangle (A) 

on it represent ag(t) and as(t) at the same t , 

respectively. 
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occur in the transition phase in their case. It is, however~ clear from our 

calculation that the cells are already partially synchronized in this period. 

The formation of the peak in u(a, t) is also, mathematically, due to the fact 

that D+ag(t) > O. 

When rod-like bacteria such as BaaiZZus subtiUs grow, they generally 

increase their length. not their thickness. A septum appears, as they grow, 

at the middle of the length of a cell (then called "septated cell" ) and 

after some time division occurs at the site of the septum. As Maruyama et 

al. have measured the ratio of the number of the septated cells to the total 

number of the cells, the value of 

r ag(t) 
u(a, t)da 

.as (t) 

~ ag (t) 
u(a, t)da 

, 0 

is known at each t, where as(t) is the age of the youngest cells that have 

observable septum at time t. Hence, we can calculate as(t). as(t) is con-

sidered to have close relation to the cell age at which the biosynthesis of 

the septum starts. The result is shown in Figure 2. In the early transitio~ 

phase ag(t) - as(t) =: const., which suggests that intracellular changes 

resulting in the elongation of ag(t) occur during 0 < a < as(t). In the 

late transition phase, on the other hand, 

D+ag(t) > D+as(t) ~ 0 • 

which suggests that the intracellular changes occur principally in the cells 

of age a > as(t) . 
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Note on the error estimate for the Newmark-B method applied to 

the second order linear evolution equation of hyperbolic type. 

By Teruo USHIJIMA 

Introduction. 

In this note we present an error estimate for the Newmark-B method 

applied to the following initial value problem (E) of the 2nd order evolution 

equation of hyperbolic type in a Hilbert space X with the positive definite 

selfadjoint operator A as its coefficient. 

2 

(E) 
1 d ~~~) + Au(t) = 0, 

l u(O) = aI, (d~ u)(O) = aD 

t>O, 

Under two conditions (A) and (I), being specified in §l, it will be shown 

that the error measured in energy norm is O(h) if the stability condition is 

satisfied. Here condition (A) corresponds to the error estimate for the 

finite element solution of the stationary problem. And condition (I) is 

a kind of inverse assumption in the finite element approximation. 

The parameter h means the representative leghth of the triangulation. 

The aim of this note is an operator theoretical reconstruction of the 

analysis done in Fujii [1] for the dynamic problem in the linear elasticity 

theory. Our method is based upon the approximation theory for semi-groups 

of linear operators due to Trotter-Kato (see e.g. Kato [3], see also Ushijima 

[5]) . Hence our estimate is valid so far as the initial data aI, and aD, 

belonging to the domain D(A 3 / 2 ), and D(A), respectively. 

Our problem'and main result is stated in §l. Then we ~stablish an 

abstract theorem concerning the error estimate for approximate discrete 
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semi-group in §2, using the results developed in Kato [3] and Ushijima [5]. 

The stability criterion of our scheme is discussed in §3. Finally the 

proof of main result is shown in §4 after series of Propositions are prep~red. 

In the anthor's previous work [6], we discussed the semi-discrete 

approximation of the problem (E). Namely the adopted approximate problem 

was also the Cauchy problem for the 2nd order ordinary differential equation. 

This note supplies a result concerning time discretization problem of (E). 

Due to the discussion given in §5 of [51. our result can be applied to the 

mixed problem with Dirichlet boundary condition for both the scalor wave 

equation and the system of linear elasticity. 

The author would like to express his sincere thanks to his respected 

friend, Professor H.Fujii of Kyoto Sangyo University. Without his constant 

interest to this study with warm encouragement, this note could not be written. 

§l. Setting of the problem and the main result. 

Consider the problem (E) stated in Introduction of this note. 

The inner product, and the norm of X, is denoted by ( , ), and II II, 
respectively. Let V be the domain of the positive square root Al/2 of A. 

The set V is considered as a Hilbert space with the inner product (u,v)V = 

(A1 / 2u, A1 / 2v) for u,v€V. 

Let Xh be a closed subspace of X contained in V, being dependent of 

positive parameter h. And let Ah be the Galerkin approximation of A. 

Namely Ah is the bounded selfadjoint operator acting in Xh defined by the 

formula : 

Following to Newmark [41, we construct an Xh-valued approximate solution 
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~(t) of (E) by the following scheme (E~.8)' 

DT=r~(t) + Pn~(t) + BT2DT=r~(t) = 0, 

nT(t«n+I)T, n=I,2,"', 

-T~t<O. 

Here Bis a nonnegative number, T is positive, and DTT = DTD=r = D=rDT ' where 

-1 
(DTu)(t) = T (u(t + T) - u(t» , (D=ru)(t) = (DTu)(t - T). 

Let Plh ' and POh ' be the orthogonal projection onto ~ from the Hilbert 

space V, and X, respectively. We require the following two conditions. 

(A) IIA1/ 2(P1hv-v)1I ~chIIAvll, v£D(A). 

(I) hll A1 / 2vh ll ~ ell vhll vh£~' 

In the above two conditions, e denote the constants independent of h and, v or 

Theorem 1. Assume (A) and (I). If 0'8<1/4, fixing y such that 

o < y < 14/(1 - 48) , and if 13=1/4 fixing y such that 0 < y < 00 , choose T in 

(E~, 8) so as to satisfYT II ~ II 1/2 ~ y . If 8>1/4, choose T being bounded 

in h. Let u(t) be the solution of (E) with the initial datum al£D(A3/~) and 

aO£D(A), and let uh(t) be the solution of (E~,8) with the initial datum 

~ = P1ha1 and ~ = POhaO. Then there is a constant C satisfying that 

II A1i2 (uh (t) - u(t»112 + II D=r~(t) - ddt u(t) II 2 

~ e (h 2 + T 2 ) {II A 3 hal II 2 + II Aa ° II 2} O{ t~T • 

where C depends on B,y,T sMP T, but not on a1 and aD. 

Tn the above theorem, 

-2 
which is O(h ) as h tends to 0 by virtue of (1). 
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§2. Error estimate for approximate discrete semi-group. 

First we briefly resume terminologies used in Kato [3] and Ushijima [5]. 

Let T(t), t~O, be a discrete semi-group with time unit T acting in a Banach 

space x. Namely there is a bounded operator T(T) acting in X with the 

property that T(t) = (T(T»[t/T] for t~O. -1 
The operator T (T(T) - 1) is 

said to be the generator of discrete semi-group T(t). 

Consider a family of Banach spaces {~: h>O} and a Banach space X. 

Let T(·t) -- e- tA b i i . X (f 1 Co. h 1 e a cont nuous sem -group 1n 0 c ass 1n t e usua 

terminology of semi-group theory, cf Hille-Phillips [2]). Suppose there 

is a discrete semi-group Th(t) acting in ~ with time unit Th for any h. 

Let ~ be the generator of Th(t). Assume that there exist continuous 

linear operators Ph from X into ~, and a scalor function E(h,T) from 

(O,OO)X(O,oo) into (0,00) so as to satisfy the following two conditions (A ) E,T 

(AE,T) 

such that 

There exist bounded inverse 
-1 

€ L(~) • h>O , and A (; L(X) 

< 00 

and that 

(B ) There is a positive constant T such that 
T 

for h>O, 

and that 

(2.1) 

sup 
O~t~T.h>O 

Theorem 2. There is a constant C such that 

II (Th(t)Ph - PhT(t»all Xh ~ C(~(h,Th) + Thll Phil L(x,~»11 A2 all X' 

OH~T, aED(A2 ). 

Proof. Condition (BT) implies that there are positive constants Nand I,) 

such that 
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for t~O and h>O. 

Due to the estimation method developed in Chapt. ]X, §3.l of Kato [3], we have 
- 2 

(2.2) II Th(t) - e-tAhll L(Xh) ~ Thewt{~ til ~211 L(Xh) + Nil ~II L(Xh)} 

with 

and 

(2.3) 

- -1 ThW 
W = sup Th (e - 1) , 

h>O 

for t~O, 

for t~O. 

From Theorem 1 of Ushijima [6], (A ) and (2.3) assure the following £,T 

estimate (2.4). 

(2.4) II (e-tAhph - PhT(t»allxh ~ CT£(h,Th)II A2 all X ' 

O~t~T, aE:D(A2), 

where CT means a constant dependent of T but independent of hand a. 

We have 

In the right hand side of this inequality, the first term is majorized by 

from (2.2), and the second term by CT£(h,Th ) from (A ). £,T 

So we have 

(2.5) II -tAh -211 (Th(t) - e )PhA L(X,Xh) 

, C hhll Phil L(X,Xh ) + E(h,Th)} , 

Finally it holds good that 

II (Th(t)Ph - PhT(t»all ~ 

, II (Th(t) - e-tAh)PhA-2A:\all X + II (e-tAhph - PhT(t»all X 
h h 

, ( by (2.5) and (2.4) ) 
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~ C (Th II Ph II L(X,Xh) + e:(h, Th» II A2a II X • 

Hence we have (2.1). 

§3. Stability of the scheme. 

Let us introduce the bounded positive selfadjoint operator ~,S defined 

by 

(3.1) 

Then our 
T 

scheme (Eh,B) can be rewritten in the following form (3.2). 

(3.2) 

DTTuh(t) + ~,Buh(t) = 0, 

nt~t«n+l)T, n=O,1,2,···, 

~(t) 

This scheme (3.2) can be transformed to the following one step scheme 

nT~t«n+l)T, n=1,2,"', 

is considered to be an element of the product space 

V 
operator from the product Hilbert space X .,.. X onto ~h 

defined by the following matrix expression: 

~,B and Bh,B are bounded linear operators acting on ~ defined by 

IA. ( 0 -1) 'm = (J\,B 0) 
-n,B = ~,B 0 h,S 0 0 

Let Vh,S be the Hilbert space ~ with the inner product: 

(ah , bh)h,B = (~,Bl/2ah' ~,Bl/2bh) for ah,bhcXh , 

and let ~,S = ~~'B be the product Hilbert space, whose norm is determined by 

_ ljH _ 



1I~lIh,f3 = (II In f31/2 a \1I 2 + II a\\I 2)112 
, 1 

for ah =(:~) €~,f3 

Now we consider discrete semi-groups l h ,f3(t) acting on ~,f3 defined by 

[tIT] 
Th ,f3(t) = [1 - T(~,f3 + tmh ,f3)] , t~O. 

Proposition 3. If O~f3<1/4., fix y satisfying 

(3.3) o<y<jl: 413 

and if 13 = 1/4 , fix y arbitrary positive constant. Define y by 

l 
y. 

if O~f3~1/4 
(3.4) y = ~BYT 

1 
if 13>1/4 • 

~ 
Choose T in OEh ,I3) so as to satisfy 

(J.5) 

being 

(3.6) 

T (II 'it \I L (Xh) ) 1/2 < y if O~f3~1/4 , 

arbitrary if 13>1/4. Then we have the estimate 

II Th , R ( t) ah II h, 13 ~ 1 + y/2 II II 
1 - y/2 ~ h,f3 

t~() • 

Proof. Since ~ is bounded positive definite selfadjoint, we have 

II ~, 1311 L(Xh ) = (1 + f3T2ah) -lah 

with ~ ... II 'it II L(Xh)' Hence 

T(II 'it, 13 11 L(Xh»1/2 

= (1 + S(T~)2)-1/2'1~ 

~ ( by (3.5) ) 

~ y// 1 + Sy2 

~ ( .by (3.4) ) 

~ y . 

Since (1 + f3y 2)-1/2y is monotone increasing for y>O, (3.3) and (3.4) assure 

(3.7) Til 'it,sll 1/2 ~ y < 2 • 

Therefore applying the following Lemma 4 to the scheme (3.1), we obtain (3.6). 

This Lemma is an abstract version of the stability criterion used by Fujii [1]. 

Lemma 4. Let A be a bounded positive selfadjoint operator acting on the 

Hilbert space X. Let u(t) be the solution of the difference equation 



D -u(t) + Au(t) = 0 , 
TT 

nT~t«n+1)T, n=O,l,2,···, 

with the initial values 

u(t) O~t<T 

= a 1 - Tao, -T~t<O. 

If 1 II A II 1 / 2 ~ Y < 2 , then we have 

II A1 / 2u(t) II 2 +11 D_u(t) II 2 
T 

~ ~ = ~~~ {II A 1/2 alII 2 + II a ° II 2} t~O • 

Proof. See the proof of Proposition 3.1 of Ushijima [5]. 

§4. Error estimate for the approximate solutions. 

Consider the closed linear operator A acting in ~ defined by 

with the domain 

D(A) = 
D(A) 

" V 

-tA Then -A generates the semigroup of linear operator e in X. 

-1 -1 
that A. and ~,B exist with the norm bounded uniformly in h. 

It is noted 

Proposition 5. There is a cons tan t C independent of S,r and h 

satisfying 

111\,S-1Pha ~ lPl\-l all h,S ~ C(ST + h) II all X • 

a 1 U 1 ) 1 Proof. For a =(aO) , let u = (uO = A- a , Wb,B = l u~ Q) _ -1 

u~:~ -~,S a. 
Then we have 

and 

-u~,s = Plha 1 , (1 + Sy2~)-1~u~,S = POhao . 

We use auxiliar1y u~ = P1hu1 , which satisfies 

~u~ P Ohao 

Therefore 
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which implies 

Hence 

So we have 

II 1/2 1 1 II ~,B (Uh,B - P1hU ) 

II 1/2 1 1 II ~,B (Uh,B - Uh) 

= BT211 ~,BI/2pOhaoll 
~ ( by (3.7) ) 

~ 21h II P Oh aO II . 

(4.1) II U~,B - Plhu111 h,B~ 21hll aoll • 

From Proposition 4.1 of Ushijima [6], which is an abstract version of 

Aubin-Nitsche's duality argument, condition (A) implies 

(4.2) \I Plhv - vII ~ chll AI/2vll , V£D(A I / 2). 

On the other hand it holds that 

II u~, B - P Oh U ° II :: II P Ih a I - P Oh a 1 II 
~ lip a 1 -alii + lIa l - P alii Ih Oh 

~ 211 P Ih a 1 - a 1 II . 
By (4.2), we have 

(4.3) II ~,B - pOhuOIl ,chll Al/2a1 11 • 

Since' 

II 1)1, s- lIP h a - FhA -1 a II h, B 2 

= II U~,B - Pl,hu111 ~,B + II U~,B - Po,huOIl 2 

(4.2) and (4.3) assure the conclusion of Proposition 5. 

Proposition 6. -1 
The bounded inverse ~,B + TBh,a) £ L(~,B) exists 

and satisfy 

Proof. In fact we have 
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h = (0 I) 
w ere ~. SOl ) • 

Since 

we have 

II (1b,6 + T]3h,6)-I~,611 L(~,6) ~ 1 + Til ~,61/211 

Hence by (3.7) 

( 4 • 4) "II (,\, 6 + T]3h , 6) - 1,\ , 6 II L (~ , 6) ~ 3. 

-1 -1 

And U>n,6 ]3h,/h,6 = -~, 6 

implies 

(4.5) II U>n, 6 - ~h , rib , 6- 1 II L (~ • 6) 1. 

Noticing the equality 

-1 -1 

(~ , ~ + TlBh , S) - ,\, B 
-1 -1 

= -T~,6 + T]3h,6) lBh ,tn,6 

= -T{(~, 6 + TTI3h , a) -1/>n, sHIb, a -~h ,fh, a-I} 

we have the conclusion from (4.4) and (4.5) . 

Propositions 5 and 6 imply the following Proposition 7, which in turn 

implies Proposition 8 by Theorem 2. 

Proposition 7. There is a constant C independent of 6,T and h satisfying 

Proposition 8. There is a constant CT satisfying 

II (1h (t)Ph -lPhe-tA)all h,a ~ CT(h + T) 1Ig..2all X 

for ~t~T, a€D(A2 ) 

provided that the stability condition stated in Proposition 3 is satisfied. 

Proof of Theorem 1. Let a 1 € D(A 3 !2) and a O € D(A) This 
1 

condition is equivalent to a = (:0) € D(A2). Since 

II A 2 a II ,/ = II A 3 / 2 a 1 1\ 2 + II Aa 0 II 2 
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Let (U(t) Then u(t) = ( u;t) ) where u(t) is the solution 
·dt u(t) 

-t;;>. 
= ea. 

of the continuous problem (E). Similarly let uh(t) = I h (t)wha. 

_ ( uh ( t ) ) ( ) (T ) Then uh(t) - DTuh(t) . where uh t is the solution of Eh,a' 

Now we have 

(4.6) uh(t) - u(t) 

:: (\llh ( t) - ]' hill ( t » + (IP h u ( t) - 11 ( t» . 
It is easy to see 

( 4 • 7) II Ph u (t) - u ( t) i 11( ~ Ch i I Aa II X ' t ~O • 

As for the 1st term of the right-hand side of (4.6), it is noted that 
2 

(4.8) 11~(t) -lPhu(t) II x 

= II ~(t) - F hl1(t) II ~,a + 8'(211 ~.al/2~1/2(~(t) - P1hu(t» II 2 

Proposition 8 implies that 

The remaining thing is to obtain the following estimate: 

(4.10) 

To do this, we note 

Therefore by Schwartz inequality 

(4.11) 

II 1/ L II ~,8 (uh - P1hll) 

" II~ -]'hullh,a 

" lI u h ll h,r->. + IIJPhul1 h,a 

~ 1I 1h (t) ah ll h,S + IllPhull1( 

'" (1 + 9/2 ) 1/2 II I II II ~ 1- 9/2 ah I . h ,a + a x' 

since II u(t) II X = II e -tffi.a II X = II a II X and II ~ II h, a < II ah 111( 
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Therefore 

(4.12) ~ (1 + ( 1 + y/2 )1/2) II 1'1 
1 - y/2 a X . 

Next we note that 

(4.13) 

It holds tha t 

where the second inequality follows from the fact that Plh is the orthogonal 

-tA projection from V onto Vh • The unitarity of e implies 

(4.14) II 1\,Bl/~Plhull ~ II all X • 

Then vh is the solution of (3.2) with the initial datum 

Let 

Proposition 3 implies 

(4.15) II 1\,SI/Lt\l1,11 ;. 

1 + '(/2 (II 112 111 2 II 011 2 ~ 1 - y/2 1\,13 ~P1ha + ~POha ). 

It holds that 

~ ( by condition (I) and the orthogonality of PIh ) 

~ ch-111 POhAa l - PlhAall1 + II A3/2a 1 11 

~ 2 Ch - 1 II P 1 h Aa 1 - Aa 1 Ii + II A 1 / 2 EI 1 II 
~ .( by (4.2) ) 

~ 2 Ch -1 • h Ii A 3 /2 a 1 II + \I A 3 hal Ii . 

Therefore we have 

(4.16 ) 

Analogously as above we havp 

Since we havl' 



II 1\ P Oh a 0 II 
~ II ~(POhaO - P1haO)II + II ~p1haOIl 
~ ch-lll P1ha u - aOIi + II POhAa" II 

, ( by the duality argument ) 

Hence we have 

(4.17) 

Inserting (4.16) and (4.17) into (4.15), then we obtain 

(4.18) II ~,al/2~uhll ~ clIA2all" • 

Again inserting (4.14) and (4.18) into (4.13), ,we have 

(4.19) II ~,al/2 (~~ - P1hu) II ,clI A2all" • 

The estimates (4.11), (4.12) and (4.19) assure (4.10). From (4.6) 

to (4.10), we have the conclusion of Theorem 1. 

References 

[1] Fuj if, H., Finite element method for mixed initial-boundary value 

problems in elasticity theory, ( Doctoral thesis, Kyoto Univ., 1973 ). 

[2] Hille, E., Phillips, R. S., Functional analysis and semi-groups, 

( Amer. Math. Soc. Colloq. Publ., 11, 1957 ). 

[3] Kato, T., Perturbation theory for linear operators, ( Springer, 

Berlin, 1966 ). 

[4] Newmark, N. M., A method of computaticn for structural dynamics, 

Jour. Engineering Mechanics Division, IN Proceedings of the American 

Society of Civil Engineers, 85, EM3, 67-94 (1959). 

[5 ] Ushijima, T., Approximation theory for semi-groups of linear 

operators and its application to wave equations, Japan. '.1. Math., !, 

185-224 (1975). 

[ () 1 Ushij ima, T., On the finite element type approximation of semi-grc.ups 

- fiS _ 



of linear operators, Lecture Notes Num. App1. Anal. 1, 1-24 ( Kinokuniya, 

Tokyo, 1979 ). 

Department of Information Mathematics 

The University of Electro-Communications 

1-5-1 Chofugaoka, Chofu-shi, 

Tokyo, 182, Japan 

- 66 -


	mnm_07_a.pdf
	mnm_07_001
	mnm_07_011
	mnm_07_029
	mnm_07_053

