On solvability of a time-fractional semilinear heat equation, and its quantitative approach to the classical counterpart.

Mizuki Kojima (Tokyo Institute of Technology) Email: kojima.m.aq@m.titech.ac.jp Joint work with Kotaro Hisa (Tohoku University)

1. Introduction

Fujita equation

Time-fractional equation

(F)
$$\begin{cases} \partial_t u - \Delta u = u^p & \text{in } (0, T) \times \mathbb{R}^N \\ u(0) = u_0 & \text{on } \mathbb{R}^N \end{cases}$$

$$\text{(F)} \quad \begin{cases} \partial_t u - \Delta u = u^p & \text{in } (0,T) \times \mathbb{R}^N \\ u(0) = u_0 & \text{on } \mathbb{R}^N \end{cases}$$

$$(\mathrm{F})_{a} \quad \begin{cases} \frac{\partial_{t}^{\alpha}}{u} u - \Delta u = u^{p} & \text{in } (0, T) \times \mathbb{R}^{N} \\ u(0) = u_{0} & \text{on } \mathbb{R}^{N} \end{cases}$$

Global-in-time solvability

- 1 No global sol.
- $p_F Global sol.$

Local-in-time solvability

For $p = p_F, \exists u_0 \in L^1(\mathbb{R}^N)$ s.t. (F) has no sol. (doubly critical)

•
$$1 No global sol.• $p_F \leq p \Rightarrow \exists$ Global sol$$

• $p_F \leq p \Rightarrow \exists$ Global sol.

For $p = p_F, \forall u_0 \in L^1(\mathbb{R}^N),$ $(F)_{\alpha}$ has a local-in-time sol.

$$(\partial_t^\alpha f)(t) \coloneqq \frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial t} \int_0^t (t-\tau)^{-\alpha} \left(f(\tau) - f(0) \right) d\tau, \quad 0 < \alpha < 1$$

Caputo derivative of order $\alpha \in (0,1)$.

Subdiffusion process: Diffusion in heterogeneous media, contaminants in Soil, etc. c.f.

- $\langle x(t)^2 \rangle \sim t \Rightarrow$ Brownian motion; $\partial_t u \Delta u = 0$.
- $\langle x(t)^{\beta} \rangle \sim t$, $0 < \beta < 2 \Rightarrow$ Superdiffusion; $\partial_t u + (-\Delta)^{\beta/2} u = 0$.

Remark

(F) and $(F)_{\alpha}$ are scale invariant in $L^1(\mathbb{R}^N)$ if $p=p_F$.

See e.g. [Zhang, Sun '15], [Ghergu, Miyamoto, Suzuki '22]

Question

Does $(F)_{\alpha}$ with $p = p_F$ approach (F) when $\alpha \rightarrow 1$? And how?

2. Necessary and sufficient condition [Hisa, K, arXiv]

N.C. Suppose that $(F)_{\alpha}$ has a solution on (0,T). Then, $\exists C(\alpha) > 0$ s.t.

$$\sup_{z\in\mathbb{R}^N}\int_{B(z;\rho)}u_0(y)dy\leq C(\alpha)\left[\int_{\rho^{2/\alpha}/(16^-)}^{1/4}t^{-\alpha}\,dt\right]^{-N/2}$$

for $0 < \rho^{2/\alpha} < T$. Moreover, we have $\limsup C(\alpha) < \infty$.

S.C. $\exists c > 0$ s.t. if

then, $(F)_{\alpha}$ has a solution on (0,T).

See e.g.

[Baras, Pierre '85], [Hisa, Ishige '18] for necessary condition;

[Oka, Zhanpeisov, arXiv] for sufficient condition.

3. Main results [Hisa, K, arXiv]

Thm.1(Global solvability) Let

 $G_{\alpha} \coloneqq \ \{v \in L^1(\mathbb{R}^N); \ v \geq 0 \text{ and } (F)_{\alpha} \text{ with } u_0 = v \text{ has a global sol.} \}$

Then, $\exists C > c > 0$ s.t.

$$c(1-\alpha)^{N/2} \leq \sup_{v \in G_{\alpha}} \|v\|_{L^{1}(\mathbb{R}^{N})} \leq C \ (1-\alpha)^{N/2}$$

near $\alpha = 1$.

Figure

As $\alpha \to 1$, the initial value must be infinitely small to obtain a global solution.

Thm.2 (Local solvability) Let

$$\mu_{\epsilon}(x) = |x|^{-N} \; (-\log|x|)^{-N/2 \; - \; 1 + \epsilon} \; \chi_{B(e^{-1})} \; \; \text{and} \; \;$$

 $T_\alpha \coloneqq \sup\{T>0; (F)_\alpha \text{ with } u_0 = \mu_\epsilon \text{ has a sol. on } (0,T).\,\}$

Then, $\exists C > c > 0$ s.t.

$$\exp\left(-C(1-\alpha)^{-\frac{N}{N-2\epsilon}}\right) \leq T_{\alpha} \leq \exp\left(-c(1-\alpha)^{-\frac{N}{N-2\epsilon}}\right).$$

- Thm.1 and Thm.2 represent the *collapse* of the global and local solvability for the time-fractional equation.
- For the proof of theorems, we use Under estimate... Sufficient condition Upper estimate—Necessary condition

(F) with $u_0 = \mu_{\epsilon}$ admits no local-in-time solutions.